login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
2

%I #28 Jul 12 2023 01:14:57

%S 0,1,1,5,7,20,35,83,161,355,720,1541,3185,6733,14027,29500,61663,

%T 129403,270865,567911,1189440,2492905,5222449,10943813,22928815,

%U 48044900,100665083,210927155,441948689,926020171,1940274000,4065458669,8518311809

%N Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.

%C The polynomial p(n,x) is defined by ((x+d)/2)^n + ((x-d)/2)^n, where d=sqrt(x^2+4). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232.

%C Assuming the o.g.f. given below, this sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. It is the case P1 = 1, P2 = -1, Q = -1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. Cf. A100047. - _Peter Bala_, Aug 28 2019

%H G. C. Greubel, <a href="/A192422/b192422.txt">Table of n, a(n) for n = 0..1000</a>

%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-1,-1).

%F From _Colin Barker_, May 12 2014: (Start)

%F a(n) = a(n-1) + 3*a(n-2) - a(n-3) - a(n-4).

%F G.f.: x*(1 + x^2)/(1 - x - 3*x^2 + x^3 + x^4). (End)

%F From _Vladimir Kruchinin_, Mar 20 2016: (Start)

%F G.f.: ((1+x^2)/(1-x^2)) * F(x/(1-x^2)), where F(x) is g.f. of Fibonacci numbers (A000045).

%F a(n) = n*Sum_{i=0..floor((n-1)/2)} (binomial(n-i-1,i)/(n-2*i))*Fibonacci(n-2*i). (End)

%F a(n) = Sum_{j=0..n} T(n, j)*Fibonacci(j), where T(n, k) = [x^k] ((x + sqrt(x^2+4))^n + (x - sqrt(x^2+4))^n)/2^n. - _G. C. Greubel_, Jul 11 2023

%e The first five polynomials p(n,x) and their reductions are as follows:

%e p(0,x) = 2 -> 2

%e p(1,x) = x -> x

%e p(2,x) = 2 + x^2 -> 3 + x

%e p(3,x) = 3*x + x^3 -> 1 + 5*x

%e p(4,x) = 2 + 4*x^2 + x^4 -> 8 + 7*x.

%e From these, read A192421 = (2, 0, 3, 1, 8, ...) and a(n) = (0, 1, 1, 5, 7, ...).

%t (See A192421.)

%t LinearRecurrence[{1,3,-1,-1}, {0,1,1,5}, 40] (* _G. C. Greubel_, Jul 11 2023 *)

%o (Maxima)

%o a(n):=n*sum((binomial(n-i-1,i))/(n-2*i)*fib(n-2*i),i,0,(n-1)/2); /* _Vladimir Kruchinin_, Mar 20 2016 */

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x^2)/(1-x-3*x^2+x^3+x^4) )); // _G. C. Greubel_, Jul 11 2023

%o (SageMath)

%o @CachedFunction

%o def a(n): # a = A192422

%o if (n<4): return (0,1,1,5)[n]

%o else: return a(n-1) +3*a(n-2) -a(n-3) -a(n-4)

%o [a(n) for n in range(41)] # _G. C. Greubel_, Jul 11 2023

%Y Cf. A000045, A100047, A192232, A192421.

%K nonn

%O 0,4

%A _Clark Kimberling_, Jun 30 2011