login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192420
Smallest k such that 1^4, 2^4, 3^4,... ,n^4 are distinct modulo k.
4
1, 2, 6, 9, 11, 14, 14, 18, 19, 22, 22, 31, 31, 31, 31, 38, 38, 38, 38, 43, 43, 46, 46, 59, 59, 59, 59, 59, 59, 62, 62, 67, 67, 71, 71, 79, 79, 79, 79, 83, 83, 86, 86, 94, 94, 94, 94, 103, 103, 103, 103, 107, 107, 118, 118, 118, 118, 118, 118, 127, 127, 127, 127, 131, 131, 134, 134, 139, 139
OFFSET
1,2
COMMENTS
The discriminator D(4,n).
LINKS
P. Moree, H. Roskam, On an arithmetical function related to Euler's totient and the discriminator, Fib. Quart. 33 (4) (1995), 332-340
MAPLE
dis := proc(j, n) local k, s, i; for k from 1 do s := {} ; for i from 1 to n do s := s union { (i^j) mod k} ; end do: if nops(s) = n then return k; end if; end do: end proc:
A192420 := proc(n) dis(4, n) ; end proc:
MATHEMATICA
a[n_] := For[k = 1, True, k++, If[Unequal @@ PowerMod[Range[n], 4, k], Return[k]]]; Array[a, 100] (* Jean-François Alcover, May 18 2018 *)
PROG
(PARI) A192420(nMax, f=n->n^4)={my(S=[], a=1); vector(nMax, n, S=concat(S, f(n)); while(#Set(S%a)<n, a++); a)} \\ M. F. Hasler, May 04 2016
CROSSREFS
Sequence in context: A146974 A133160 A128906 * A139639 A187690 A045038
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jun 30 2011
STATUS
approved