login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A146974 Numbers k such that there is no nonzero integer solution for the Diophantine equation x_1^2 + x_2^2 + ... + x_k^2 = x_1*x_2*...*x_k. 0
2, 6, 9, 11, 12, 15, 16, 18, 20, 21, 24, 29, 32, 33, 36, 41, 42, 45, 48, 50, 51, 56, 57, 60, 66, 72, 76, 77, 81, 82, 84, 90, 96, 99, 101, 102, 105, 106, 108, 113, 114, 120, 122, 123, 126, 132, 136, 137, 140, 141, 144, 146, 156, 162, 164, 168, 171, 176, 177, 180 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

In the link, a C++ program calling the GMP library is provided to solve such kinds of equations.

If the equation has nonzero solutions and k > 2, then there is a positive integer solution (x_1, x_2, ..., x_k) such that 3 <= x_1*x_2*...*x_(k-2) <= n and x_(k-1) <= sqrt((x_1^2 + x_2^2 + ... + x_(k-2)^2)/(x_1*x_2*...*x_(k-2) - 2)).

LINKS

Table of n, a(n) for n=1..60.

Link for the problem to be solved [broken link?]

A Chinese webpage where the problem is raised

EXAMPLE

For k=3, there are nonzero integer solutions 3^2 + 3^2 + 3^2 = 3*3*3; 3^2 + 6^2 + 15^2 = 3*6*15.

For k=4, there are nonzero integer solutions 2^2 + 2^2 + 2^2 + 2^2 = 2*2*2*2; 2^2 + 6^2 + 22^2 + 262^2 = 2*6*22*262.

However, for k=2, there is no nonzero integer solution for the equation a^2 + b^2 = a*b.

PROG

(PARI) is(w, k) = my(p, s); for(x=w[k], sqrtint((s=sum(i=1, k, w[i]^2))\p=vecprod(w)-2), if(issquare((p^2+4*p)*x^2-4*s), return(1)))

lista(nn) = my(b, t, v=List([])); for(n=2, nn, b=1; for(i=1, #v, if(n%vecprod(v[i])==0&&v[i][1]<=t=n\vecprod(v[i]), listput(v, concat(t, v[i])))); listput(v, [n]); for(m=2, #v, if(is(concat(vector(n-2-#v[m], i, 1), v[m]), n-2), b=0; break)); if(b, print1(n, ", "))) \\ Jinyuan Wang, Oct 04 2021

CROSSREFS

Cf. A002559, A061292.

Sequence in context: A109600 A071814 A066586 * A133160 A128906 A192420

Adjacent sequences: A146971 A146972 A146973 * A146975 A146976 A146977

KEYWORD

nonn

AUTHOR

Zhao Hui Du, Nov 04 2008

EXTENSIONS

Edited by Jon E. Schoenfield, Aug 09 2015

More terms from Jinyuan Wang, Oct 04 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 04:44 EDT 2023. Contains 361603 sequences. (Running on oeis4.)