login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146973
Eigentriangle, row sums = A000931 starting with offset 3.
1
1, -1, 1, 2, -1, 0, -2, 2, 0, 1, 3, -2, 0, -1, 1, -3, 3, 0, 2, -1, 1, 4, -3, 0, -2, 2, -1, 2, -4, 4, 0, 3, -2, 2, -2, 2, 5, -4, 0, -3, 3, -2, 4, -2, 3, -5, 5, 0, 4, -3, 3, -4, 4, -3, 4, 6, -5, 0, -4, 4, -3, 6, -4, 5, -6, 6, 0, 5, -4, 4, -6, 6, -6, 8, -5, 7
OFFSET
3,4
COMMENTS
Row sums and right border = the Padovan sequence, A000931 starting with offset 3: (1, 1, 0, 1, 1, 1, 2, 2, 3,...).
Sum of n-th row terms = rightmost term of next row.
FORMULA
Triangle read by rows, T * Q, where T = an infinite lower triangular matrix with (1, -1, 2, -2, 3, -3,...) in every column and Q = an infinite lower triangular matrix with the Padovan sequence, A000931 as the main diagonal starting with offset 3: (1, 1, 0, 1, 1, 1, 2, 2, 3,...). The rest of triangle Q = all zeros. This triangle = T * Q.
EXAMPLE
First few rows of the triangle =
1;
-1, 1;
2, -1, 0;
-2, 2, 0, 1;
3, -2, 0, -1, 1;
-3, 3, 0, 2, -1, 1;
4, -3, 0, -2, 2, -1, 2;
-4, 4, 0, 3, -2, 2, -2, 2;
5, -4, 0, -3, 3, -2, 4, -2, 3;
-5, 5, 0, 4, -3, 3, -4, 4, -3, 4;
6, -5, 0, -4, 4, -3, 6, -4, 6, -4, 5;
-6, 6, 0, 5, -4, 4, -6, 6, -6, 8, -5, 7;
7, -6, 0, -5, 5, -4, 8, -6, 9, -8, 10, -7, 9
-7, 7, 0, 6, -5, 5, -8, 8, -9, 12, -10, 14, -9, 12;
...
Row 6 = (-2, 2, 0, 1) = termwise products of (-2, 2, 0, 1) and (1, 1, 0, 1).
CROSSREFS
Cf. A000931.
Sequence in context: A065676 A334153 A281461 * A003263 A271224 A157242
KEYWORD
eigen,tabl,sign
AUTHOR
Gary W. Adamson, Nov 03 2008
STATUS
approved