login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091154 Numerator of Maclaurin expansion of (t*sqrt(t^2+1) + arcsinh(t))/2, the arc length of Archimedes' spiral. 0
1, 1, -1, 1, -5, 7, -21, 11, -429, 715, -2431, 4199, -29393, 52003, -185725, 334305, -3231615, 3535767, -64822395, 39803225, -883631595, 1641030105, -407771117, 11435320455, -171529806825, 107492012277, -1215486600363, 2295919134019 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

From Mikhail Gaichenkov, Feb 05 2013: (Start)

For Archimedean spiral (r=at) and the arc length s(t)= a(t*sqrt(t^2+1) + arcsinh(t))/2, the limit of s’’(t)=a, t- -> infinity. In other words, a point moves with uniform acceleration along the spiral while the spiral corresponds to the locations over time of a point moving away from a fixed point with a constant speed along a line that rotates with constant angular velocity.

The error of approximation for large t: |a-s’’(t)| ~ a/(2(1+t^2)) (Gaichenkov private research).

The arc of the Archimedean spiral is approximated by the differential equation in polar coordinates r’^2+r^2=(at)^2 (see A202407). (End)

LINKS

Table of n, a(n) for n=1..28.

Eric Weisstein's World of Mathematics, Archimedes' Spiral

EXAMPLE

t + t^3/6 - t^5/40 + t^7/112 - (5*t^9)/1152 + (7*t^11)/2816 - ...

CROSSREFS

Denominators are in A002595.

Sequence in context: A192422 A120035 A198302 * A057424 A027152 A076197

Adjacent sequences:  A091151 A091152 A091153 * A091155 A091156 A091157

KEYWORD

sign,easy

AUTHOR

Eric W. Weisstein, Dec 22 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 21:00 EST 2018. Contains 317278 sequences. (Running on oeis4.)