login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192110
Monotonic ordering of nonnegative differences 2^i - 3^j, for 40 >= i >= 0, j >= 0.
9
0, 1, 3, 5, 7, 13, 15, 23, 29, 31, 37, 47, 55, 61, 63, 101, 119, 125, 127, 175, 229, 247, 253, 255, 269, 295, 431, 485, 503, 509, 511, 781, 943, 997, 1015, 1021, 1023, 1319, 1631, 1805, 1909, 1967, 2021, 2039, 2045, 2047, 3367, 3853, 4015, 4069, 4087, 4093
OFFSET
1,3
COMMENTS
Comments from N. J. A. Sloane, Oct 21 2019: (Start)
Warning: Note the definition assumes i <= 40.
Because of this assumption, it is not true that this is (except for a(1)=0) the complement of A075824 in the odd integers.
However, by definition, it is the complement of A328077.
(End)
All 52 sequences in this set are finite. - Georg Fischer, Nov 16 2021
LINKS
Rok Cestnik, Table of n, a(n) for n = 1..534 [truncated to 2^40-1 by Georg Fischer, Nov 16 2021]
H. Gauchman and I. Rosenholtz (Proposers), R. Martin (Solver), Difference of prime powers, Problem 1404, Math. Mag., 65 (No. 4, 1992), 265; Solution, Math. Mag., 66 (No. 4, 1993), 269.
Math Overflow, 3^n - 2^m = +-41 is not possible. How to prove it?, Several contributors, Jun 29 2010.
EXAMPLE
The differences accrue like this:
1-1
2-1
4-3.....4-1
8-3.....8-1
16-9....16-3....16-1
32-27...32-9....32-3....32-1
64-27...64-9....64-3....64-1
MATHEMATICA
c = 2; d = 3; t[i_, j_] := c^i - d^j;
u = Table[t[i, j], {i, 0, 40}, {j, 0, i*Log[d, c]}];
v = Union[Flatten[u ]]
CROSSREFS
Cf. A075824, A173671, A192111, A328077 (complement).
For primes, see A007643, A007644, A321671.
This is the first of a set of 52 similar sequences:
A192110: 2^i-3^j, A192111: 3^i-2^j, A192112: 2^i-4^j, A192113: 4^i-2^j, A192114: 2^i-5^j, A192115: 5^i-2^j, A192116: 2^i-6^j, A192117: 6^i-2^j,
A192118: 2^i-7^j, A192119: 7^i-2^j, A192120: 2^i-8^j, A192121: 8^i-2^j, A192122: 2^i-9^j, A192123: 9^i-2^j, A192124: 2^i-10^j, A192125: 10^i-2^j,
A192147: 3^i-4^j, A192148: 4^i-3^j, A192149: 3^i-5^j, A192150: 5^i-3^j, A192151: 3^i-6^j, A192152: 6^i-3^j, A192153: 3^i-7^j, A192154: 7^i-3^j,
A192155: 3^i-8^j, A192156: 8^i-3^j, A192157: 3^i-9^j, A192158: 9^i-3^j, A192159: 3^i-10^j, A192160: 10^i-3^j, A192161: 4^i-5^j, A192162: 5^i-4^j,
A192163: 4^i-6^j, A192164: 6^i-4^j, A192165: 4^i-7^j, A192166: 7^i-4^j, A192167: 4^i-8^j, A192168: 8^i-4^j, A192169: 4^i-9^j, A192170: 9^i-4^j,
A192171: 4^i-10^j, A192172: 10^i-4^j, A192193: 5^i-6^j, A192194: 6^i-5^j, A192195: 5^i-7^j, A192196: 7^i-5^j, A192197: 5^i-8^j, A192198: 8^i-5^j,
A192199: 5^i-9^j, A192200: 9^i-5^j, A192201: 5^i-10^j, A192202: 10^i-5^j.
Sequence in context: A097687 A032911 A157834 * A246026 A188574 A247458
KEYWORD
nonn,fini
AUTHOR
Clark Kimberling, Jun 23 2011
STATUS
approved