login
A192108
a(1)=1; for n>1, a(n) = n*(10^(n^2)-1)/9 written in base n.
0
1, 100010101110, 212020020002101000, 33302203023130111130130130, 142330104010234210234210234210234210, 10225201200453221555314535245115155324023111430, 5152124535261564540656541032335232432112241035404402500510
OFFSET
1,2
COMMENTS
For n = 2 through 9, this is the decimal number with n^2 digits all equal to n, then written in base n. For n>9 the reader has to separate the "digits" himself (so this is a fairly unsatisfactory sequence).
This is to A191244 as n^2 is to n.
EXAMPLE
For n=3: form the number with 3^2 = 9 digits all equal to 3, 333333333. This is then converted into base 3, to get 212020020002101000.
MAPLE
f:=n->n*(10^(n^2)-1)/9;
g:=n->convert(f(n), base, n);
for n from 2 to 20 do
t1:=g(n);
t2:=nops(t1);
lprint( [seq(t1[t2+1-i], i=1..t2)]);
od:
CROSSREFS
Cf. A191244.
Sequence in context: A017519 A017651 A072145 * A214702 A164935 A349321
KEYWORD
nonn,easy,base
AUTHOR
Jonathan Vos Post, Dec 31 2012
EXTENSIONS
Edited by N. J. A. Sloane, Jan 05 2013
STATUS
approved