login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Monotonic ordering of nonnegative differences 2^i - 3^j, for 40 >= i >= 0, j >= 0.
9

%I #46 Jan 22 2022 23:45:54

%S 0,1,3,5,7,13,15,23,29,31,37,47,55,61,63,101,119,125,127,175,229,247,

%T 253,255,269,295,431,485,503,509,511,781,943,997,1015,1021,1023,1319,

%U 1631,1805,1909,1967,2021,2039,2045,2047,3367,3853,4015,4069,4087,4093

%N Monotonic ordering of nonnegative differences 2^i - 3^j, for 40 >= i >= 0, j >= 0.

%C Comments from _N. J. A. Sloane_, Oct 21 2019: (Start)

%C Warning: Note the definition assumes i <= 40.

%C Because of this assumption, it is not true that this is (except for a(1)=0) the complement of A075824 in the odd integers.

%C However, by definition, it is the complement of A328077.

%C (End)

%C All 52 sequences in this set are finite. - _Georg Fischer_, Nov 16 2021

%H Rok Cestnik, <a href="/A192110/b192110.txt">Table of n, a(n) for n = 1..534</a> [truncated to 2^40-1 by _Georg Fischer_, Nov 16 2021]

%H H. Gauchman and I. Rosenholtz (Proposers), R. Martin (Solver), <a href="https://www.jstor.org/stable/2691457">Difference of prime powers, Problem 1404</a>, Math. Mag., 65 (No. 4, 1992), 265; <a href="https://www.jstor.org/stable/2690747">Solution</a>, Math. Mag., 66 (No. 4, 1993), 269.

%H Math Overflow, <a href="https://mathoverflow.net/questions/29926/3n-2m-pm-41-is-not-possible-how-to-prove-it/29956#29956">3^n - 2^m = +-41 is not possible. How to prove it?</a>, Several contributors, Jun 29 2010.

%e The differences accrue like this:

%e 1-1

%e 2-1

%e 4-3.....4-1

%e 8-3.....8-1

%e 16-9....16-3....16-1

%e 32-27...32-9....32-3....32-1

%e 64-27...64-9....64-3....64-1

%t c = 2; d = 3; t[i_, j_] := c^i - d^j;

%t u = Table[t[i, j], {i, 0, 40}, {j, 0, i*Log[d, c]}];

%t v = Union[Flatten[u ]]

%Y Cf. A075824, A173671, A192111, A328077 (complement).

%Y For primes, see A007643, A007644, A321671.

%Y This is the first of a set of 52 similar sequences:

%Y A192110: 2^i-3^j, A192111: 3^i-2^j, A192112: 2^i-4^j, A192113: 4^i-2^j, A192114: 2^i-5^j, A192115: 5^i-2^j, A192116: 2^i-6^j, A192117: 6^i-2^j,

%Y A192118: 2^i-7^j, A192119: 7^i-2^j, A192120: 2^i-8^j, A192121: 8^i-2^j, A192122: 2^i-9^j, A192123: 9^i-2^j, A192124: 2^i-10^j, A192125: 10^i-2^j,

%Y A192147: 3^i-4^j, A192148: 4^i-3^j, A192149: 3^i-5^j, A192150: 5^i-3^j, A192151: 3^i-6^j, A192152: 6^i-3^j, A192153: 3^i-7^j, A192154: 7^i-3^j,

%Y A192155: 3^i-8^j, A192156: 8^i-3^j, A192157: 3^i-9^j, A192158: 9^i-3^j, A192159: 3^i-10^j, A192160: 10^i-3^j, A192161: 4^i-5^j, A192162: 5^i-4^j,

%Y A192163: 4^i-6^j, A192164: 6^i-4^j, A192165: 4^i-7^j, A192166: 7^i-4^j, A192167: 4^i-8^j, A192168: 8^i-4^j, A192169: 4^i-9^j, A192170: 9^i-4^j,

%Y A192171: 4^i-10^j, A192172: 10^i-4^j, A192193: 5^i-6^j, A192194: 6^i-5^j, A192195: 5^i-7^j, A192196: 7^i-5^j, A192197: 5^i-8^j, A192198: 8^i-5^j,

%Y A192199: 5^i-9^j, A192200: 9^i-5^j, A192201: 5^i-10^j, A192202: 10^i-5^j.

%K nonn,fini

%O 1,3

%A _Clark Kimberling_, Jun 23 2011