login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191760
Digital root of the n-th odd square.
1
1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1
OFFSET
1,2
COMMENTS
This sequence is periodic with period <1,9,7,4,9,4,7,9,1> of length nine.
Related to the continued fraction of (153727+sqrt(2207057870693))/1477642 = 1+ 1/(9+1/(7+1/...)). - R. J. Mathar, Jun 27 2011
FORMULA
a(n) = 3*(1+cos(2(n-2)pi/3)+cos(4(n-2)pi/3)) +mod( (1+n)(1+7n-7n^2+7n^3+n^4-n^5+3n^6+3n^7), 9).
a(n) = a(n-9).
a(n) = 51-a(n-1)-a(n-2)-a(n-3)-a(n-4)-a(n-5)-a(n-6)-a(n-7)-a(n-8).
a(n) = A010888(A016754(n)).
G.f.: x(1+9x+7x^2+4x^3+9x^4+4x^5+7x^6+9x^7+x^8)/( (1-x)*(1+x+x^2)*(1+x^3+x^6) ) (note that the coefficients of x in the numerator are precisely the terms that constitute the periodic cycle of the sequence).
a(n) = A056992(2n-1). - R. J. Mathar, Jun 27 2011
EXAMPLE
The fifth, odd square number is 81 which has digital root 9. Hence a(5)=9.
MATHEMATICA
DigitalRoot[n_Integer?Positive]:=FixedPoint[Plus@@IntegerDigits[#]&, n]; DigitalRoot[#] &/@((2#-1)^2 &/@Range[81])
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 9, 7, 4, 9, 4, 7, 9, 1}, 81] (* Ray Chandler, Aug 25 2015 *)
PadRight[{}, 120, {1, 9, 7, 4, 9, 4, 7, 9, 1}] (* Harvey P. Dale, Jun 26 2021 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Ant King, Jun 17 2011
STATUS
approved