OFFSET
1,2
COMMENTS
This sequence is periodic with period <1,9,7,4,9,4,7,9,1> of length nine.
Related to the continued fraction of (153727+sqrt(2207057870693))/1477642 = 1+ 1/(9+1/(7+1/...)). - R. J. Mathar, Jun 27 2011
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1).
FORMULA
a(n) = 3*(1+cos(2(n-2)pi/3)+cos(4(n-2)pi/3)) +mod( (1+n)(1+7n-7n^2+7n^3+n^4-n^5+3n^6+3n^7), 9).
a(n) = a(n-9).
a(n) = 51-a(n-1)-a(n-2)-a(n-3)-a(n-4)-a(n-5)-a(n-6)-a(n-7)-a(n-8).
G.f.: x(1+9x+7x^2+4x^3+9x^4+4x^5+7x^6+9x^7+x^8)/( (1-x)*(1+x+x^2)*(1+x^3+x^6) ) (note that the coefficients of x in the numerator are precisely the terms that constitute the periodic cycle of the sequence).
a(n) = A056992(2n-1). - R. J. Mathar, Jun 27 2011
EXAMPLE
The fifth, odd square number is 81 which has digital root 9. Hence a(5)=9.
MATHEMATICA
DigitalRoot[n_Integer?Positive]:=FixedPoint[Plus@@IntegerDigits[#]&, n]; DigitalRoot[#] &/@((2#-1)^2 &/@Range[81])
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 9, 7, 4, 9, 4, 7, 9, 1}, 81] (* Ray Chandler, Aug 25 2015 *)
PadRight[{}, 120, {1, 9, 7, 4, 9, 4, 7, 9, 1}] (* Harvey P. Dale, Jun 26 2021 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Ant King, Jun 17 2011
STATUS
approved