login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Digital root of the n-th odd square.
1

%I #20 Apr 16 2023 10:42:28

%S 1,9,7,4,9,4,7,9,1,1,9,7,4,9,4,7,9,1,1,9,7,4,9,4,7,9,1,1,9,7,4,9,4,7,

%T 9,1,1,9,7,4,9,4,7,9,1,1,9,7,4,9,4,7,9,1,1,9,7,4,9,4,7,9,1,1,9,7,4,9,

%U 4,7,9,1,1,9,7,4,9,4,7,9,1

%N Digital root of the n-th odd square.

%C This sequence is periodic with period <1,9,7,4,9,4,7,9,1> of length nine.

%C Related to the continued fraction of (153727+sqrt(2207057870693))/1477642 = 1+ 1/(9+1/(7+1/...)). - _R. J. Mathar_, Jun 27 2011

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,1).

%F a(n) = 3*(1+cos(2(n-2)pi/3)+cos(4(n-2)pi/3)) +mod( (1+n)(1+7n-7n^2+7n^3+n^4-n^5+3n^6+3n^7), 9).

%F a(n) = a(n-9).

%F a(n) = 51-a(n-1)-a(n-2)-a(n-3)-a(n-4)-a(n-5)-a(n-6)-a(n-7)-a(n-8).

%F a(n) = A010888(A016754(n)).

%F G.f.: x(1+9x+7x^2+4x^3+9x^4+4x^5+7x^6+9x^7+x^8)/( (1-x)*(1+x+x^2)*(1+x^3+x^6) ) (note that the coefficients of x in the numerator are precisely the terms that constitute the periodic cycle of the sequence).

%F a(n) = A056992(2n-1). - _R. J. Mathar_, Jun 27 2011

%e The fifth, odd square number is 81 which has digital root 9. Hence a(5)=9.

%t DigitalRoot[n_Integer?Positive]:=FixedPoint[Plus@@IntegerDigits[#]&,n];DigitalRoot[#] &/@((2#-1)^2 &/@Range[81])

%t LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 9, 7, 4, 9, 4, 7, 9, 1},81] (* _Ray Chandler_, Aug 25 2015 *)

%t PadRight[{},120,{1,9,7,4,9,4,7,9,1}] (* _Harvey P. Dale_, Jun 26 2021 *)

%Y Cf. A010888, A016754, A056992.

%K nonn,base,easy

%O 1,2

%A _Ant King_, Jun 17 2011