This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191757 Number of n-step four-sided prudent self-avoiding walks ending on the top side of their box. 3
 1, 3, 7, 19, 49, 129, 333, 865, 2233, 5763, 14825, 38087, 97641, 249961, 638861, 1630681, 4156737, 10583483, 26916167, 68383509, 173565889, 440133159, 1115145081, 2823128197, 7141682287, 18053470305, 45606579731, 115137581735, 290498368253 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES E. Duchi, On some classes of prudent walks, in: FPSAC'05, Taormina, Italy, 2005. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..100 M. Bousquet-Mélou, Families of prudent self-avoiding walks, DMTCS proc. AJ, 2008, 167-180. EXAMPLE a(3) = 19: EEE, EEN, ENE, ENN, ENW, NEE, NEN, NNE, NNN, NNW, NWN, NWW, WNE, WNN, WNW, WWN, WWW, SEN, SWN. MAPLE b:= proc(d, i, n, x, y, w, s)       if wn, 0, `if`(n=0, `if`(y=0, 1, 0),          `if`(d in [0, 1] or d<>3 and (x=0 or i),               b(1, evalb(x=0), n-1, max(x-1, 0), y, w+1, s), 0) +          `if`(d in [0, 2] or d<>4 and (y=0 or i),               b(2, evalb(y=0), n-1, x, max(y-1, 0), w, s+1), 0) +          `if`(d in [0, 3] or d<>1 and (w=0 or i),               b(3, evalb(w=0), n-1, x+1, y, max(w-1, 0), s), 0) +          `if`(d in [0, 4] or d<>2 and (s=0 or i),               b(4, evalb(s=0), n-1, x, y+1, w, max(s-1, 0)), 0)))       fi     end: a:= n-> b(0, false, n, 0, 0, 0, 0): seq(a(n), n=0..30); MATHEMATICA b[d_, i_, n_, x_, y_, w_, s_] := b[d, i, n, x, y, w, s] = If[w < x,  b[{3, 2, 1, 4}[[d]], i, n, w, y, x, s], b[d, i, n, x, y, w, s] = If[y > n, 0, If[n == 0, If[y == 0, 1, 0], If[MemberQ[{0, 1}, d] || d != 3 && (x == 0 || i), b[1, x == 0, n - 1, Max[x - 1, 0], y, w + 1, s], 0] + If[MemberQ[{0, 2}, d] || d != 4 && (y == 0 || i), b[2, y == 0, n - 1, x, Max[y - 1, 0], w, s + 1], 0] + If[MemberQ[{0, 3}, d] || d != 1 && (w == 0 || i), b[3, w == 0, n - 1, x + 1, y, Max[w - 1, 0], s], 0] + If[MemberQ[{0, 4}, d] || d != 2 && (s == 0 || i), b[4, s == 0, n - 1, x, y + 1, w, Max[s - 1, 0]], 0]]]]; a[n_] :=  b[0, False, n, 0, 0, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 23 2017, translated from Maple *) CROSSREFS Cf. A191756, A191758. Sequence in context: A073063 A007288 A191824 * A061646 A017926 A017927 Adjacent sequences:  A191754 A191755 A191756 * A191758 A191759 A191760 KEYWORD nonn,walk AUTHOR Alois P. Heinz, Jun 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)