login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191432
Dispersion of ([n*x+1/x]), where x=sqrt(2) and [ ]=floor, by antidiagonals.
2
1, 2, 5, 3, 7, 8, 4, 10, 12, 11, 6, 14, 17, 16, 15, 9, 20, 24, 23, 21, 18, 13, 28, 34, 33, 30, 26, 22, 19, 40, 48, 47, 43, 37, 31, 25, 27, 57, 68, 67, 61, 53, 44, 36, 29, 38, 81, 96, 95, 86, 75, 62, 51, 41, 32, 54, 115, 136, 135, 122, 106, 88, 72, 58, 45, 35, 77, 163, 193, 191, 173, 150, 125, 102, 82, 64, 50, 39
OFFSET
1,2
COMMENTS
Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence.
Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.
Conjecture: It appears this sequence is related to the even numbers with odd abundance A088827. Looking at the table format if the columns represent the powers of 2 (starting at 2^1) and the rows represent the squares of odd numbers, then taking the product of a term's row and column gives the n-th term in A088827. Example: A088827(67) = (7^2) * (2^6) = 3136. - John Tyler Rascoe, Jul 12 2022
EXAMPLE
Northwest corner:
1 2 3 4 6 9
5 7 10 14 20 28
8 12 17 24 34 48
11 16 23 33 47 67
15 21 30 43 61 86
MATHEMATICA
(* Program generates the dispersion array T of increasing sequence f[n] *)
r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *)
c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *)
x = Sqrt[2];
f[n_] := Floor[n*x + 1/x] (* f(n) is complement of column 1 *)
mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1,
Length[Union[list]]]
rows = {NestList[f, 1, c]};
Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
t[i_, j_] := rows[[i, j]]; TableForm[
Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191432 array *)
Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191432 sequence *)
(* Program by Peter J. C. Moses, Jun 01 2011 *)
PROG
(PARI) s(n) = my(x=quadgen(8)); floor(n*x+1/x); \\ A001953
t(n) = floor((n+1/2)*(2+quadgen(8))); \\ A001954
T(n, k) = my(x = t(n-1)); for (i=2, k, x = s(x); ); x; \\ Michel Marcus, Jul 13 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jun 03 2011
STATUS
approved