login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191426
Dispersion of (3+[n*r]), where r=(golden ratio)=(1+sqrt(5))/2 and [ ]=floor, by antidiagonals.
91
1, 4, 2, 9, 6, 3, 17, 12, 7, 5, 30, 22, 14, 11, 8, 51, 38, 25, 20, 15, 10, 85, 64, 43, 35, 27, 19, 13, 140, 106, 72, 59, 46, 33, 24, 16, 229, 174, 119, 98, 77, 56, 41, 28, 18, 373, 284, 195, 161, 127, 93, 69, 48, 32, 21, 606, 462, 318, 263, 208, 153, 114, 80, 54, 36, 23, 983, 750, 517, 428, 339, 250, 187, 132, 90, 61, 40, 26
OFFSET
1,2
COMMENTS
Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022342 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.
REFERENCES
Clark Kimberling, Fractal sequences and interspersions, Ars Combinatoria 45 (1997) 157-168.
LINKS
Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3, Fall 1998, p. 176. Solution published in Vol. 12, No. 1, Winter 2000, pp. 61-62.
Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
A. J. Macfarlane, On the fibbinary numbers and the Wythoff array, arXiv:2405.18128 [math.CO], 2024. See page 2.
EXAMPLE
Northwest corner:
1...4...9...17..30
2...6...12..22..38
3...7...14..25..43
5...11..20..35..59
8...15..27..46..77
MATHEMATICA
(* Program generates the dispersion array T of increasing sequence f[n] *)
r = 40; r1 = 12; (* r=#rows of T, r1=#rows to show *)
c = 40; c1 = 12; (* c=#cols of T, c1=#cols to show *)
x = GoldenRatio; f[n_] := Floor[n*x + 3]
mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
rows = {NestList[f, 1, c]};
Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
t[i_, j_] := rows[[i, j]];
TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
(* A191426 array *)
Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191426 sequence *)
(* Program by Peter J. C. Moses, Jun 01 2011 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jun 02 2011
STATUS
approved