The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191145 Increasing sequence S generated by these rules: a(1)=1, and if x is in S then both 3x+2 and 4x+3 are in S. 2
 1, 5, 7, 17, 23, 31, 53, 71, 95, 127, 161, 215, 287, 383, 485, 511, 647, 863, 1151, 1457, 1535, 1943, 2047, 2591, 3455, 4373, 4607, 5831, 6143, 7775, 8191, 10367, 13121, 13823, 17495, 18431, 23327, 24575, 31103, 32767, 39365, 41471, 52487, 55295, 69983, 73727, 93311, 98303, 118097, 124415, 131071, 157463, 165887 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A191113. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 MATHEMATICA h = 3; i = 2; j = 4; k = 3; f = 1; g = 11; a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191145 *) b = (a - 2)/3; c = (a - 3)/4; r = Range[1, 16000]; d = Intersection[b, r] (* A191145 *) e = Intersection[c, r] (* A191145 *) m = (a + 1)/2 (* A025613 *) PROG (Haskell) import Data.Set (singleton, deleteFindMin, insert) a191145 n = a191145_list !! (n-1) a191145_list = f \$ singleton 1 where f s = m : (f \$ insert (3*m+2) \$ insert (4*m+3) s') where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Jun 01 2011 CROSSREFS See A191113. Sequence in context: A359297 A283159 A283145 * A145354 A214345 A166109 Adjacent sequences: A191142 A191143 A191144 * A191146 A191147 A191148 KEYWORD nonn AUTHOR Clark Kimberling, May 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 05:31 EDT 2024. Contains 371655 sequences. (Running on oeis4.)