login
A359297
Primes prime(k) such that ( 8*(prime(k-1) - prime(k-2)) ) | (prime(k)^2 - 1).
0
5, 7, 17, 23, 31, 41, 47, 71, 79, 97, 113, 127, 151, 167, 191, 223, 233, 239, 241, 263, 271, 281, 337, 353, 367, 383, 431, 439, 449, 457, 463, 479, 521, 569, 577, 599, 601, 607, 617, 631, 641, 647, 673, 743, 751, 761, 769, 809, 839, 863, 881, 887, 911, 929, 953
OFFSET
1,1
EXAMPLE
5 is a term since (5^2 - 1) / (8*(3-2)) = 24/8 = 3.
97 is a term since (97^2 - 1) / 8*(89-83)= 9408/48 = 196.
MATHEMATICA
Select[Partition[Prime[Range[200]], 3, 1], Divisible[(#[[3]]^2 - 1)/8, #[[2]] - #[[1]]] &][[;; , 3]] (* Amiram Eldar, Feb 11 2023 *)
CROSSREFS
Sequence in context: A043879 A370855 A044966 * A283159 A283145 A191145
KEYWORD
nonn
AUTHOR
Najeem Ziauddin, Feb 11 2023
STATUS
approved