login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191143
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+2 and 4x+1 are in a.
4
1, 5, 17, 21, 53, 65, 69, 85, 161, 197, 209, 213, 257, 261, 277, 341, 485, 593, 629, 641, 645, 773, 785, 789, 833, 837, 853, 1025, 1029, 1045, 1109, 1365, 1457, 1781, 1889, 1925, 1937, 1941, 2321, 2357, 2369, 2373, 2501, 2513, 2517, 2561, 2565, 2581, 3077, 3089, 3093, 3137, 3141, 3157, 3329, 3333, 3349, 3413, 4097, 4101
OFFSET
1,2
COMMENTS
See A191113.
LINKS
MATHEMATICA
h = 3; i = 2; j = 4; k = 1; f = 1; g = 9;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191143 *)
b = (a - 2)/3; c = (a - 1)/4; r = Range[1, 1500];
d = Intersection[b, r] (* A191210 *)
e = Intersection[c, r] (* A191136 *)
m = (a + 1)/2 (* divisibility property *)
p = (a + 3)/4 (* divisibility property *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191143 n = a191143_list !! (n-1)
a191143_list = f $ singleton 1
where f s = m : (f $ insert (3*m+2) $ insert (4*m+1) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
Cf. A191113.
Sequence in context: A305478 A262620 A191210 * A032376 A145818 A029986
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 28 2011
STATUS
approved