login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190736
Diagonal sums of the Riordan matrix A121576.
1
1, 2, 7, 29, 139, 731, 4096, 24005, 145420, 903503, 5726290, 36878978, 240663403, 1587928511, 10575884599, 71005972250, 480071241463, 3265685620913, 22335284505529, 153496543690226, 1059443187603955, 7340794592800628, 51042913856490028
OFFSET
0,2
LINKS
FORMULA
a(n) = [x^n](1-2*x-2*x^2)*(1+2*x)^(n+1)/((1+2*x-x^2+x^3)(1-x)^(n+1)).
G.f.: (4-5*x-2*x^2-(2+x)*sqrt(1-8*x+4*x^2))/(2*(1-x+2*x^2+x^3)).
Recurrence: 0 = 6*(n^2+17*n+72)*a(n+9) - (35*n^2+577*n+2376)*a(n+8) - (81*n^2+835*n+1856)*a(n+7) + (101*n^2+1017*n+2164)*a(n+6) - 2*(151*n^2+1883*n+5970)*a(n+5) - 2*(33*n^2+458*n+1528)*a(n+4) + (47*n^2+567*n+1564)*a(n+3) - 2*(7*n^2-16*n-120)*a(n+2) + 4*(3*n^2+8*n+4)*a(n+1) + 8*(n^2+3*n+2)*a(n).
Conjecture: n*(11*n-35)*a(n) + 3*(-33*n^2+149*n-136)*a(n-1) +2*(77*n^2-377*n+396)*a(n-2) +(-209*n^2+1061*n-1200)*a(n-3) +12*(-11*n+30)*a(n-4) +4*(11*n-24)*(n-4)*a(n-5)=0. - R. J. Mathar, Jul 24 2012
MATHEMATICA
CoefficientList[Series[(4-5x-2x^2-(2+x)Sqrt[1-8x+4x^2])/(2(1-x+2x^2 +x^3) ), {x, 0, 22}], x]
PROG
(PARI) x='x+O('x^30); Vec((4-5*x-2*x^2-(2+x)*sqrt(1-8*x+4*x^2))/(2*(1-x+2*x^2+x^3))) \\ G. C. Greubel, Apr 23 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((4-5*x-2*x^2-(2+x)*Sqrt(1-8*x+4*x^2))/(2*(1-x+2*x^2+x^3)))); // G. C. Greubel, Apr 23 2018
CROSSREFS
Cf. A121576.
Sequence in context: A104252 A373802 A018977 * A265000 A347431 A355254
KEYWORD
nonn
AUTHOR
Emanuele Munarini, May 18 2011
STATUS
approved