The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190739 a(n) = n + [ns/r] + [nt/r] + [nu/r] + [nv/r] + [nw/r], where r=sin(x), s=cos(x), t=tan(x), u=csc(x), v=sec(x), w=cot(x), x=Pi/8. 6
18, 38, 59, 80, 101, 119, 140, 161, 181, 203, 223, 241, 264, 284, 305, 325, 347, 365, 385, 407, 427, 448, 469, 487, 509, 530, 551, 571, 592, 611, 631, 652, 673, 694, 712, 733, 755, 775, 797, 817, 835, 856, 877, 898, 918, 940, 958, 978, 1001, 1021, 1042, 1063, 1081, 1102, 1122, 1144, 1164, 1185, 1204, 1224, 1246, 1267, 1288 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
This is one of six sequences that partition the positive integers. In general, suppose that r, s, t, u, v, w are positive real numbers for which the sets {i/r : i>=1}, {j/s : j>=1}, {k/t : k>=1, {h/u : h>=1}, {p/v : p>=1}, {q/w : q>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the six sets are jointly ranked. Define b(n), c(n), d(n), e(n), f(n) as the ranks of n/s, n/t, n/u, n/v, n/w respectively. It is easy to prove that
a(n) = n + [ns/r] + [nt/r] + [nu/r] + [nv/r] + [nw/r],
b(n) = [nr/s] + [nt/s] + [nu/s] + [nv/s] + [nw/s],
c(n) = [nr/t] + [ns/t] + [nu/t] + [nv/t] + [nw/t],
d(n) = n + [nr/u] + [ns/u] + [nt/u] + [nv/u] + [nw/u],
e(n) = n + [nr/v] + [ns/v] + [nt/v] + [nu/v] + [nw/v],
f(n) = n + [nr/w] + [ns/w] + [nt/w] + [nu/w] + [nv/w], where []=floor.
Choosing r=sin(x), s=cos(x), t=tan(x), u=csc(x), v=sec(x), w=cot(x), x=Pi/8, gives a=A190739, b=A190740, c=A190741, d=A190742, e=A190743, f=A190744.
LINKS
MATHEMATICA
x = Pi/8;
r = Sin[x]; s = Cos[x]; t = Tan[x]; u = 1/r; v = 1/s; w = 1/t;
p[n_, h_, k_] := Floor[n*h/k]
a[n_] := n + p[n, s, r] + p[n, t, r] + p[n, u, r] + p[n, v, r] + p[n, w, r]
b[n_] := n + p[n, r, s] + p[n, t, s] + p[n, u, s] + p[n, v, s] + p[n, w, s]
c[n_] := n + p[n, r, t] + p[n, s, t] + p[n, u, t] + p[n, v, t] + p[n, w, t]
d[n_] := n + p[n, r, u] + p[n, s, u] + p[n, t, u] + p[n, v, u] + p[n, w, u]
e[n_] := n + p[n, r, v] + p[n, s, v] + p[n, t, v] + p[n, u, v] + p[n, w, v]
f[n_] := n + p[n, r, w] + p[n, s, w] + p[n, t, w] + p[n, u, w] + p[n, v, w]
Table[a[n], {n, 1, 120}] (* A190739 *)
Table[b[n], {n, 1, 120}] (* A190740 *)
Table[c[n], {n, 1, 120}] (* A190741 *)
Table[d[n], {n, 1, 120}] (* A190742 *)
Table[e[n], {n, 1, 120}] (* A190743 *)
Table[f[n], {n, 1, 120}] (* A190744 *)
CROSSREFS
Sequence in context: A244412 A114698 A119127 * A084585 A132761 A079862
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 18 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)