Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 08 2022 08:45:57
%S 1,2,7,29,139,731,4096,24005,145420,903503,5726290,36878978,240663403,
%T 1587928511,10575884599,71005972250,480071241463,3265685620913,
%U 22335284505529,153496543690226,1059443187603955,7340794592800628,51042913856490028
%N Diagonal sums of the Riordan matrix A121576.
%H G. C. Greubel, <a href="/A190736/b190736.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = [x^n](1-2*x-2*x^2)*(1+2*x)^(n+1)/((1+2*x-x^2+x^3)(1-x)^(n+1)).
%F G.f.: (4-5*x-2*x^2-(2+x)*sqrt(1-8*x+4*x^2))/(2*(1-x+2*x^2+x^3)).
%F Recurrence: 0 = 6*(n^2+17*n+72)*a(n+9) - (35*n^2+577*n+2376)*a(n+8) - (81*n^2+835*n+1856)*a(n+7) + (101*n^2+1017*n+2164)*a(n+6) - 2*(151*n^2+1883*n+5970)*a(n+5) - 2*(33*n^2+458*n+1528)*a(n+4) + (47*n^2+567*n+1564)*a(n+3) - 2*(7*n^2-16*n-120)*a(n+2) + 4*(3*n^2+8*n+4)*a(n+1) + 8*(n^2+3*n+2)*a(n).
%F Conjecture: n*(11*n-35)*a(n) + 3*(-33*n^2+149*n-136)*a(n-1) +2*(77*n^2-377*n+396)*a(n-2) +(-209*n^2+1061*n-1200)*a(n-3) +12*(-11*n+30)*a(n-4) +4*(11*n-24)*(n-4)*a(n-5)=0. - _R. J. Mathar_, Jul 24 2012
%t CoefficientList[Series[(4-5x-2x^2-(2+x)Sqrt[1-8x+4x^2])/(2(1-x+2x^2 +x^3) ),{x,0,22}],x]
%o (PARI) x='x+O('x^30); Vec((4-5*x-2*x^2-(2+x)*sqrt(1-8*x+4*x^2))/(2*(1-x+2*x^2+x^3))) \\ _G. C. Greubel_, Apr 23 2018
%o (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((4-5*x-2*x^2-(2+x)*Sqrt(1-8*x+4*x^2))/(2*(1-x+2*x^2+x^3)))); // _G. C. Greubel_, Apr 23 2018
%Y Cf. A121576.
%K nonn
%O 0,2
%A _Emanuele Munarini_, May 18 2011