login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A190733
Expansion of (4*x+2)/(1+sqrt(1-4*x-4*x^2)).
1
1, 3, 5, 15, 49, 175, 657, 2559, 10241, 41855, 173953, 732927, 3123457, 13439743, 58307841, 254779391, 1120247809, 4952864767, 22005184513, 98196398079, 439923990529, 1977917169663, 8921667641345, 40361657696255, 183092192411649, 832634240106495, 3795237359190017
OFFSET
0,2
LINKS
FORMULA
a(n) = (n+1)*sum(k=1..n+1,binomial(k,n-k+1)*Catalan(k-1)/k).
D-finite with recurrence: (n+1)*a(n) +(-n+1)*a(n-1) +14*(-n+2)*a(n-2) +20*(-n+3)*a(n-3) +8*(-n+4)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
MATHEMATICA
CoefficientList[Series[(4x+2)/(1+Sqrt[1-4x-4x^2]), {x, 0, 40}], x] (* Harvey P. Dale, Mar 20 2015 *)
PROG
(Maxima)
a(n):=(n+1)*sum(binomial(k, n-k+1)/k*binomial(2*k-2, k-1)/k, k, 1, (n+1))
(PARI) x='x+O('x^66); /* that many terms */
Vec((4*x+2)/(1+sqrt(1-4*x-4*x^2))) /* show terms */ /* Joerg Arndt, May 27 2011 */
CROSSREFS
Sequence in context: A038375 A103043 A018601 * A211344 A006394 A018650
KEYWORD
nonn
AUTHOR
Dmitry Kruchinin, May 26 2011
STATUS
approved