login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190733
Expansion of (4*x+2)/(1+sqrt(1-4*x-4*x^2)).
1
1, 3, 5, 15, 49, 175, 657, 2559, 10241, 41855, 173953, 732927, 3123457, 13439743, 58307841, 254779391, 1120247809, 4952864767, 22005184513, 98196398079, 439923990529, 1977917169663, 8921667641345, 40361657696255, 183092192411649, 832634240106495, 3795237359190017
OFFSET
0,2
LINKS
FORMULA
a(n) = (n+1)*sum(k=1..n+1,binomial(k,n-k+1)*Catalan(k-1)/k).
D-finite with recurrence: (n+1)*a(n) +(-n+1)*a(n-1) +14*(-n+2)*a(n-2) +20*(-n+3)*a(n-3) +8*(-n+4)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
MATHEMATICA
CoefficientList[Series[(4x+2)/(1+Sqrt[1-4x-4x^2]), {x, 0, 40}], x] (* Harvey P. Dale, Mar 20 2015 *)
PROG
(Maxima)
a(n):=(n+1)*sum(binomial(k, n-k+1)/k*binomial(2*k-2, k-1)/k, k, 1, (n+1))
(PARI) x='x+O('x^66); /* that many terms */
Vec((4*x+2)/(1+sqrt(1-4*x-4*x^2))) /* show terms */ /* Joerg Arndt, May 27 2011 */
CROSSREFS
Sequence in context: A038375 A103043 A018601 * A211344 A006394 A018650
KEYWORD
nonn
AUTHOR
Dmitry Kruchinin, May 26 2011
STATUS
approved