login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188782
Number of 7-turn bishop's tours on an n X n board summed over all starting positions.
1
0, 0, 0, 784, 40496, 451104, 2803552, 12139552, 41792672, 121269248, 310362944, 718151344, 1534460624, 3067048224, 5801302304, 10464095808, 18125622336, 30299632896, 49104515712, 77410664016, 119081302128, 179178580768
OFFSET
1,4
COMMENTS
Row 7 of A188777.
LINKS
FORMULA
Contribution from Vaclav Kotesovec, Sep 01 2012: (Start)
Empirical: Recurrence: a(n) = a(n-14) - 4*a(n-13) + a(n-12) + 16*a(n-11) - 19*a(n-10) - 20*a(n-9) + 45*a(n-8) - 45*a(n-6) + 20*a(n-5) + 19*a(n-4) - 16*a(n-3) - a(n-2) + 4*a(n-1).
Empirical: G.f.: 16*x^4*(49 + 2335*x + 18119*x^2 + 65761*x^3 + 125593*x^4 + 154411*x^5 + 109333*x^6 + 52763*x^7 + 12090*x^8 + 1722*x^9)/((1-x)^9*(1+x)^5).
Empirical: a(n) = 6421/16 - 581677*n/210 + 2022619*n^2/315 - 340262*n^3/45 + 1915471*n^4/360 - 106466*n^5/45 + 29363*n^6/45 - 31916*n^7/315 + 16943*n^8/2520 + (-1)^n*(-6421/16 + 1645*n/2 - 557*n^2 + 155*n^3 - 123*n^4/8).
(End)
EXAMPLE
Some solutions for 4 X 4
..0..4..0..2....0..3..0..0....4..0..0..0....0..0..1..0....0..0..3..0
..7..0..3..0....4..0..2..0....0..3..0..7....0..5..0..2....0..1..0..4
..0..1..0..5....0..6..0..1....2..0..6..0....4..0..6..0....2..0..6..0
..0..0..6..0....7..0..5..0....0..1..0..5....0..3..0..7....0..5..0..7
CROSSREFS
Cf. A188777.
Sequence in context: A203790 A223493 A231976 * A184601 A151658 A231771
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 10 2011
STATUS
approved