Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 12 2023 14:59:56
%S 0,0,0,784,40496,451104,2803552,12139552,41792672,121269248,310362944,
%T 718151344,1534460624,3067048224,5801302304,10464095808,18125622336,
%U 30299632896,49104515712,77410664016,119081302128,179178580768
%N Number of 7-turn bishop's tours on an n X n board summed over all starting positions.
%C Row 7 of A188777.
%H R. H. Hardin, <a href="/A188782/b188782.txt">Table of n, a(n) for n = 1..28</a>
%F Contribution from _Vaclav Kotesovec_, Sep 01 2012: (Start)
%F Empirical: Recurrence: a(n) = a(n-14) - 4*a(n-13) + a(n-12) + 16*a(n-11) - 19*a(n-10) - 20*a(n-9) + 45*a(n-8) - 45*a(n-6) + 20*a(n-5) + 19*a(n-4) - 16*a(n-3) - a(n-2) + 4*a(n-1).
%F Empirical: G.f.: 16*x^4*(49 + 2335*x + 18119*x^2 + 65761*x^3 + 125593*x^4 + 154411*x^5 + 109333*x^6 + 52763*x^7 + 12090*x^8 + 1722*x^9)/((1-x)^9*(1+x)^5).
%F Empirical: a(n) = 6421/16 - 581677*n/210 + 2022619*n^2/315 - 340262*n^3/45 + 1915471*n^4/360 - 106466*n^5/45 + 29363*n^6/45 - 31916*n^7/315 + 16943*n^8/2520 + (-1)^n*(-6421/16 + 1645*n/2 - 557*n^2 + 155*n^3 - 123*n^4/8).
%F (End)
%e Some solutions for 4 X 4
%e ..0..4..0..2....0..3..0..0....4..0..0..0....0..0..1..0....0..0..3..0
%e ..7..0..3..0....4..0..2..0....0..3..0..7....0..5..0..2....0..1..0..4
%e ..0..1..0..5....0..6..0..1....2..0..6..0....4..0..6..0....2..0..6..0
%e ..0..0..6..0....7..0..5..0....0..1..0..5....0..3..0..7....0..5..0..7
%Y Cf. A188777.
%K nonn
%O 1,4
%A _R. H. Hardin_, Apr 10 2011