login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151658 Number of permutations of 8 indistinguishable copies of 1..n with exactly 2 adjacent element pairs in decreasing order. 1
0, 784, 73200, 3884640, 182107936, 8277726192, 373396825488, 16812327355840, 756652360885056, 34050346486482384, 1532275508306401840, 68952496159266606624, 3102863293076011859040, 139628857613659024861360, 6283298684030318768507856, 282748441663401954476011392 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..500

Index entries for linear recurrences with constant coefficients, signature (66,-1083,6508,-13671,11826,-3645).

FORMULA

a(n) = 45^n - (8*n + 1)*9^n + 4*n*(8*n + 1). - Andrew Howroyd, May 06 2020

From Colin Barker, Jul 19 2020: (Start)

G.f.: 16*x^2*(49 + 1341*x - 6093*x^2 - 6561*x^3) / ((1 - x)^3*(1 - 9*x)^2*(1 - 45*x)).

a(n) = 66*a(n-1) - 1083*a(n-2) + 6508*a(n-3) - 13671*a(n-4) + 11826*a(n-5) - 3645*a(n-6) for n>6.

(End)

PROG

(PARI) a(n) = {45^n - (8*n + 1)*9^n + 4*n*(8*n + 1)} \\ Andrew Howroyd, May 06 2020

(PARI) concat(0, Vec(16*x^2*(49 + 1341*x - 6093*x^2 - 6561*x^3) / ((1 - x)^3*(1 - 9*x)^2*(1 - 45*x)) + O(x^40))) \\ Colin Barker, Jul 19 2020

CROSSREFS

Cf. A151624.

Sequence in context: A231976 A188782 A184601 * A231771 A252389 A159896

Adjacent sequences:  A151655 A151656 A151657 * A151659 A151660 A151661

KEYWORD

nonn,easy

AUTHOR

R. H. Hardin, May 29 2009

EXTENSIONS

Terms a(7) and beyond from Andrew Howroyd, May 06 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 28 13:03 EDT 2020. Contains 338055 sequences. (Running on oeis4.)