login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188783
Number of 8-turn bishop's tours on an n X n board summed over all starting positions
0
0, 0, 0, 384, 88264, 1665344, 14497784, 80088992, 335122320, 1142391712, 3358831216, 8772323808, 20882774744, 46000760736, 95075730152, 186010966464, 347367851808, 622687135680, 1077266143968, 1805545001664, 2942598571752
OFFSET
1,4
COMMENTS
Row 8 of A188777
FORMULA
From Vaclav Kotesovec, Sep 01 2012: (Start)
Empirical: Recurrence: a(n) = a(n-17) - 5*a(n-16) + 4*a(n-15) + 20*a(n-14) - 40*a(n-13) - 16*a(n-12) + 100*a(n-11) - 44*a(n-10) - 110*a(n-9) + 110*a(n-8) + 44*a(n-7) - 100*a(n-6) + 16*a(n-5) + 40*a(n-4) - 20*a(n-3) - 4*a(n-2) + 5*a(n-1)
Empirical: G.f.: 8*x^4*(48 + 10841*x + 164036*x^2 + 980511*x^3 + 2981932*x^4 + 5786766*x^5 + 6924788*x^6 + 5849090*x^7 + 3007252*x^8 + 1111577*x^9 + 201048*x^10 + 23391*x^11)/((1-x)^10*(1+x)^6)
Empirical: a(n) = -31395/16 + 31519*n/2 - 50452903*n^2/1260 + 13521503*n^3/270 - 4517641*n^4/120 + 224087*n^5/12 - 93658*n^6/15 + 60857*n^7/45 - 428119*n^8/2520 + 503*n^9/54 + (-1)^n*(31395/16 - 55203*n/10 + 20473*n^2/4 - 4275*n^3/2 + 3349*n^4/8 - 629*n^5/20)
(End)
EXAMPLE
Some solutions for 4X4
..0..3..0..8....4..0..7..0....4..0..8..0....0..5..0..1....0..8..0..1
..6..0..2..0....0..6..0..1....0..2..0..7....6..0..3..0....5..0..3..0
..0..7..0..4....8..0..3..0....1..0..5..0....0..8..0..4....0..4..0..7
..1..0..5..0....0..2..0..5....0..6..0..3....2..0..7..0....2..0..6..0
CROSSREFS
Sequence in context: A190401 A256727 A023098 * A008692 A364181 A193313
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 10 2011
STATUS
approved