login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188433 a(n) = [2r]-[nr]-[2r-nr], where r=(1+sqrt(5))/2 and [.]=floor. 4
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

This is column two of the array A188294.

a(n) = 1 - A123740(n-2) for n>2 (from [-x] = -[x] - 1 for non-integer x). - Michel Dekking, Oct 03 2016

Positions of 0's and 1's are given in A188434 (essentially = A101868) and A188435 (essentially = A188010). 0's are always isolated, and except for the initial term, run lengths of 1's are either 2 or 4. In that sequence of run lengths (1, 2, 4, 2, 4, 4, 2, 4, 2, ...), the 2's are always isolated and the run lengths of 4's are either 1 or 2. In that sequence of run lengths (1, 2, 1, 2, 2, 1, 2, 1, 2, 2, ...), 1's are always isolated, and the run lengths of 2's are again either 1 or 2. - M. F. Hasler, Oct 12 2017

Along the same line of Dekking's comment above, a(n) = 1 - A188009(n), for n > 2. This explains why A188435(n) = A188010(n+1) and A188434(n) = A101868(n+1) = A101866(1,n+1) for all n > 1. - M. F. Hasler, Dec 14 2017

LINKS

Table of n, a(n) for n=1..138.

FORMULA

a(n) = [2r]-[nr]-[2r-nr], where r=(1+sqrt(5))/2.

MATHEMATICA

r = (1 + 5^(1/2))/2;

f[n_] := Floor[2r] - Floor[n*r] - Floor[2r - n*r]

A188433 = Flatten[Table[f[n], {n, 1, 200}]] (* see also A188434 and A188435 *)

PROG

(PARI) a(n, a=sqrt(5)/2-.5)=3-n\a-(2-n)\a \\ M. F. Hasler, Oct 12 2017

CROSSREFS

Cf. A188294, A188434, A188435, A188009.

Sequence in context: A117568 A093521 A187948 * A267635 A267034 A167364

Adjacent sequences:  A188430 A188431 A188432 * A188434 A188435 A188436

KEYWORD

nonn

AUTHOR

Clark Kimberling, Mar 31 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 12:34 EDT 2020. Contains 337393 sequences. (Running on oeis4.)