OFFSET
1,3
COMMENTS
Let A be a set of positive integers. We say that A is n-full if (sum A)=[n] for a positive integer n, where (sum A) is the set of all positive integers which are a sum of distinct elements of A and [n]={1,2,...,n}. The number a(n) denotes the maximum of the set {max A: (sum A)=[n]}, or 0 if there is no n-full set.
LINKS
Mohammad Saleh Dinparvar, Python program (github)
L. Naranjani and M. Mirzavaziri, Full Subsets of N, Journal of Integer Sequences, 14 (2011), Article 11.5.3.
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(n) = ceiling(n/2) for n >= 20.
From Colin Barker, May 11 2020: (Start)
G.f.: x*(1 - x + x^2 - x^3 - 2*x^4 + 5*x^5 + x^6 - 7*x^7 - x^8 + 8*x^9 + x^10 - 3*x^11 - x^13 - 2*x^15 + 3*x^17 - x^21) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>22.
(End)
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 6, 7, 7, 8, 6, 7, 8, 9, 10, 11, 11}, 80] (* Harvey P. Dale, Jul 24 2021 *)
PROG
(Haskell)
a188430 n = a188430_list !! (n-1)
a188430_list = [1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 6, 7, 7, 8, 6, 7, 8, 9] ++
(drop 19 a008619_list)
-- Reinhard Zumkeller, Aug 06 2015
(PARI) Vec(x*(1 - x + x^2 - x^3 - 2*x^4 + 5*x^5 + x^6 - 7*x^7 - x^8 + 8*x^9 + x^10 - 3*x^11 - x^13 - 2*x^15 + 3*x^17 - x^21) / ((1 - x)^2*(1 + x)) + O(x^80)) \\ Colin Barker, May 11 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Madjid Mirzavaziri, Mar 31 2011
STATUS
approved