OFFSET
0,2
COMMENTS
From Robert Israel, Nov 14 2016: (Start)
a(n) < 2*n for n > 1.
If a(n) = 0, then a((2*k+1)*n + k) = 0 for all k >= 0.
(End)
REFERENCES
M. R. Mudge, Smarandache Notions Journal, University of Craiova, Vol. VII, No. 1, 1996.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10000
MAPLE
f:= proc(n) local t, r, m;
r:= 1; t:= 0;
for m from 1 do
r:= r*m mod (2*n+1);
if r = 0 then return 0 fi;
t:= t + r mod (2*n+1);
if t = 0 then return m fi;
od;
end proc:
f(0):= 1:
map(f, [$0..100]); # Robert Israel, Nov 14 2016
MATHEMATICA
a[n_] := Module[{t, r, m}, r = 1; t = 0; For[m = 1, True, m++, r = Mod[r m, 2 n + 1]; If[r == 0, Return[0]]; t = Mod[t + r, 2 n + 1]; If[t == 0, Return[m]]]];
a[0] = 1;
a /@ Range[0, 100] (* Jean-François Alcover, Jul 19 2020, after Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael R. Mudge (Amsorg(AT)aol.com), additional terms from Allan C. Wechsler
STATUS
approved