login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188429
L(n) is the minimum of the largest elements of all n-full sets, or 0 if no such set exists.
3
1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7, 5, 6, 6, 6, 7, 7, 6, 7, 7, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 12, 13, 13
OFFSET
1,3
COMMENTS
Let A be a set of positive integers. We say that A is n-full if (sum A)=[n] for a positive integer n, where (sum A) is the set of all positive integers which are a sum of distinct elements of A and [n]={1,2,...,n}. The number L(n) denotes the minimum of the set {max A: (sum A)=[n] }.
Terms m > 7 occur exactly m times. - Reinhard Zumkeller, Aug 06 2015
LINKS
Mohammad Saleh Dinparvar, Python program
L. Naranjani and M. Mirzavaziri, Full Subsets of N, Journal of Integer Sequences, 14 (2011), Article 11.5.3.
FORMULA
for n>= 15. Let n=k(k+1)/2+r, where r=0,1,..., k then
|k, if r=0
L(n) = |k+1, if 1 <= r <= k-2
|k+2, if k-1 <= r <= k.
EXAMPLE
From Reinhard Zumkeller, Aug 06 2015: (Start)
Compressed table: no commas and for a and k: 10 replaced by A, 11 by B.
. -----------------------------------------------------------------------------
. n 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70
. ---- .---.----.----.----.----.----.----.----.----.----.----.----.----.----.-
. t(n) 10100100010000100000100000010000000100000000100000000010000000000100000
. k(n) 1 2 3 4 5 6 7 8 9 A B
. r(n) 0101201230123401234501234560123456701234567801234567890123456789A012345
. ---- -----------------------------------------------------------------------
. a(n) 102003400455675666776777788788888998999999AA9AAAAAAABBABBBBBBBBCCBCCCCC
. -----------------------------------------------------------------------------
where t(n)=A010054(n), k(n)=A127648(n) zeros blanked, and r(n)=A002262(n). (End)
MATHEMATICA
kr[n_] := {k, r} /. ToRules[Reduce[0 <= r <= k && n == k*((k+1)/2)+r, {k, r}, Integers]]; L[n_] := Which[{k0, r0} = kr[n]; r0 == 0, k0, 1 <= r0 <= k0-2, k0+1, k0-1 <= r0 <= k0, k0+2]; Join[{1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7}, Table[L[n], {n, 15, 80}]] (* Jean-François Alcover, Oct 10 2015 *)
PROG
(Haskell)
a188429 n = a188429_list !! (n-1)
a188429_list = [1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7] ++
f [15 ..] (drop 15 a010054_list) 0 4
where f (x:xs) (t:ts) r k | t == 1 = (k + 1) : f xs ts 1 (k + 1)
| r < k - 1 = (k + 1) : f xs ts (r + 1) k
| otherwise = (k + 2) : f xs ts (r + 1) k
-- Reinhard Zumkeller, Aug 06 2015
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Madjid Mirzavaziri, Mar 31 2011
STATUS
approved