OFFSET
1,3
COMMENTS
Let A be a set of positive integers. We say that A is n-full if (sum A)=[n] for a positive integer n, where (sum A) is the set of all positive integers which are a sum of distinct elements of A and [n]={1,2,...,n}. The number L(n) denotes the minimum of the set {max A: (sum A)=[n] }.
Terms m > 7 occur exactly m times. - Reinhard Zumkeller, Aug 06 2015
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Mohammad Saleh Dinparvar, Python program
L. Naranjani and M. Mirzavaziri, Full Subsets of N, Journal of Integer Sequences, 14 (2011), Article 11.5.3.
FORMULA
for n>= 15. Let n=k(k+1)/2+r, where r=0,1,..., k then
|k, if r=0
L(n) = |k+1, if 1 <= r <= k-2
|k+2, if k-1 <= r <= k.
EXAMPLE
From Reinhard Zumkeller, Aug 06 2015: (Start)
Compressed table: no commas and for a and k: 10 replaced by A, 11 by B.
. -----------------------------------------------------------------------------
. n 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70
. ---- .---.----.----.----.----.----.----.----.----.----.----.----.----.----.-
. t(n) 10100100010000100000100000010000000100000000100000000010000000000100000
. k(n) 1 2 3 4 5 6 7 8 9 A B
. r(n) 0101201230123401234501234560123456701234567801234567890123456789A012345
. ---- -----------------------------------------------------------------------
. a(n) 102003400455675666776777788788888998999999AA9AAAAAAABBABBBBBBBBCCBCCCCC
. -----------------------------------------------------------------------------
MATHEMATICA
kr[n_] := {k, r} /. ToRules[Reduce[0 <= r <= k && n == k*((k+1)/2)+r, {k, r}, Integers]]; L[n_] := Which[{k0, r0} = kr[n]; r0 == 0, k0, 1 <= r0 <= k0-2, k0+1, k0-1 <= r0 <= k0, k0+2]; Join[{1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7}, Table[L[n], {n, 15, 80}]] (* Jean-François Alcover, Oct 10 2015 *)
PROG
(Haskell)
a188429 n = a188429_list !! (n-1)
a188429_list = [1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7] ++
f [15 ..] (drop 15 a010054_list) 0 4
where f (x:xs) (t:ts) r k | t == 1 = (k + 1) : f xs ts 1 (k + 1)
| r < k - 1 = (k + 1) : f xs ts (r + 1) k
| otherwise = (k + 2) : f xs ts (r + 1) k
-- Reinhard Zumkeller, Aug 06 2015
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Madjid Mirzavaziri, Mar 31 2011
STATUS
approved