This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188429 L(n) is the minimum of the largest elements of all n-full sets, or 0 if no such set exists. 3
 1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7, 5, 6, 6, 6, 7, 7, 6, 7, 7, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 12, 13, 13 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Let A be a set of positive integers. We say that A is n-full if (sum A)=[n] for a positive integer n, where (sum A) is the set of all positive integers which are a sum of distinct elements of A and [n]={1,2,...,n}. The number L(n) denotes the minimum of the set {max A: (sum A)=[n] }. Terms m > 7 occur exactly m times. - Reinhard Zumkeller, Aug 06 2015 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 L. Naranjani and M. Mirzavaziri, Full Subsets of N, Journal of Integer Sequences, 14 (2011), Article 11.5.3. FORMULA for n>= 15. Let n=k(k+1)/2+r, where r=0,1,..., k then        |k, if r=0 L(n) = |k+1, if 1 <= r <= k-2        |k+2, if k-1 <= r <= k. EXAMPLE From Reinhard Zumkeller, Aug 06 2015: (Start) Compressed table: no commas and for a and k: 10 replaced by A, 11 by B. . ----------------------------------------------------------------------------- .   n   1   5   10   15   20   25   30   35   40   45   50   55   60   65   70 . ----  .---.----.----.----.----.----.----.----.----.----.----.----.----.----.- . t(n)  10100100010000100000100000010000000100000000100000000010000000000100000 . k(n)  1 2  3   4    5     6      7       8        9         A          B . r(n)  0101201230123401234501234560123456701234567801234567890123456789A012345 . ----  ----------------------------------------------------------------------- . a(n)  102003400455675666776777788788888998999999AA9AAAAAAABBABBBBBBBBCCBCCCCC . ----------------------------------------------------------------------------- where t(n)=A010054(n), k(n)=A127648(n) zeros blanked, and r(n)=A002262(n). (End) MATHEMATICA kr[n_] := {k, r} /. ToRules[Reduce[0 <= r <= k && n == k*((k+1)/2)+r, {k, r}, Integers]]; L[n_] := Which[{k0, r0} = kr[n]; r0 == 0, k0, 1 <= r0 <= k0-2, k0+1, k0-1 <= r0 <= k0, k0+2]; Join[{1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7}, Table[L[n], {n, 15, 80}]] (* Jean-François Alcover, Oct 10 2015 *) PROG (Haskell) a188429 n = a188429_list !! (n-1) a188429_list = [1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7] ++                f [15 ..] (drop 15 a010054_list) 0 4    where f (x:xs) (t:ts) r k | t == 1    = (k + 1) : f xs ts 1 (k + 1)                              | r < k - 1 = (k + 1) : f xs ts (r + 1) k                              | otherwise = (k + 2) : f xs ts (r + 1) k -- Reinhard Zumkeller, Aug 06 2015 CROSSREFS Cf. A188430, A188431. Cf. A010054, A127648, A002262. Sequence in context: A074734 A174956 A124182 * A188430 A013585 A261319 Adjacent sequences:  A188426 A188427 A188428 * A188430 A188431 A188432 KEYWORD nonn,nice AUTHOR Madjid Mirzavaziri, Mar 31 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 03:00 EST 2019. Contains 329836 sequences. (Running on oeis4.)