The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188432 Fixed point of the morphism 0->001, 1->01. 6
 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS This is column 1 of the array A188294. Is this A003849 with another 0 in front? - R. J. Mathar, Apr 01 2011 From Michel Dekking, Aug 27 2016: (Start) Answer: yes. Since [-x] = -[x]-1 for all non-integer x, one has for n > 1: [r] - [nr] - [(1-n)r] = 1 - [nr] + [(n-1)r] + 1 = 2 - ([nr]-[(n-1)r]) = A003849(n-2). (End) Also, [ns] - [(n-1)s] where s = (3-sqrt(5))/2, therefore a Sturmian sequence with slope s.  Also, a fixed point under the transformation (0 ->001, 1 -> 01). - Richard Blavy, Nov 18 2011; transformation corrected by Nathan Fox, May 03 2014 LINKS FORMULA a(n) = [r] - [n*r] - [r-n*r], where r = (1+sqrt(5))/2. MATHEMATICA r = (1 + 5^(1/2))/2 + .0000000000001; f[n_] := Floor[r] - Floor[n*r] - Floor[r - n*r] t = Flatten[Table[f[n], {n, 1, 200}]] (* A188432 *) Flatten[Position[t, 0] ]  (* A026351 *) Flatten[Position[t, 1] ]  (* A026352 *) CROSSREFS Cf. A188294, A096270, A026351, A026352, A003849. Sequence in context: A288216 A189628 A289239 * A282317 A212126 A144605 Adjacent sequences:  A188429 A188430 A188431 * A188433 A188434 A188435 KEYWORD nonn AUTHOR Clark Kimberling, Mar 31 2011 EXTENSIONS Name changed by Clark Kimberling, Aug 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 09:57 EDT 2021. Contains 343666 sequences. (Running on oeis4.)