Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 May 11 2020 02:38:51
%S 1,0,2,0,0,3,4,0,0,4,5,5,6,7,5,6,6,6,7,7,6,7,7,7,7,8,8,7,8,8,8,8,8,9,
%T 9,8,9,9,9,9,9,9,10,10,9,10,10,10,10,10,10,10,11,11,10,11,11,11,11,11,
%U 11,11,11,12,12,11,12,12,12,12,12,12,12,12,12,13,13,12,13,13
%N L(n) is the minimum of the largest elements of all n-full sets, or 0 if no such set exists.
%C Let A be a set of positive integers. We say that A is n-full if (sum A)=[n] for a positive integer n, where (sum A) is the set of all positive integers which are a sum of distinct elements of A and [n]={1,2,...,n}. The number L(n) denotes the minimum of the set {max A: (sum A)=[n] }.
%C Terms m > 7 occur exactly m times. - _Reinhard Zumkeller_, Aug 06 2015
%H Reinhard Zumkeller, <a href="/A188429/b188429.txt">Table of n, a(n) for n = 1..10000</a>
%H Mohammad Saleh Dinparvar, <a href="http://github.com/SalehDinparvar/sequence_computer/blob/master/A188429.py">Python program</a>
%H L. Naranjani and M. Mirzavaziri, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Mirzavaziri/mirza4.html">Full Subsets of N</a>, Journal of Integer Sequences, 14 (2011), Article 11.5.3.
%F for n>= 15. Let n=k(k+1)/2+r, where r=0,1,..., k then
%F |k, if r=0
%F L(n) = |k+1, if 1 <= r <= k-2
%F |k+2, if k-1 <= r <= k.
%e From _Reinhard Zumkeller_, Aug 06 2015: (Start)
%e Compressed table: no commas and for a and k: 10 replaced by A, 11 by B.
%e . -----------------------------------------------------------------------------
%e . n 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70
%e . ---- .---.----.----.----.----.----.----.----.----.----.----.----.----.----.-
%e . t(n) 10100100010000100000100000010000000100000000100000000010000000000100000
%e . k(n) 1 2 3 4 5 6 7 8 9 A B
%e . r(n) 0101201230123401234501234560123456701234567801234567890123456789A012345
%e . ---- -----------------------------------------------------------------------
%e . a(n) 102003400455675666776777788788888998999999AA9AAAAAAABBABBBBBBBBCCBCCCCC
%e . -----------------------------------------------------------------------------
%e where t(n)=A010054(n), k(n)=A127648(n) zeros blanked, and r(n)=A002262(n). (End)
%t kr[n_] := {k, r} /. ToRules[Reduce[0 <= r <= k && n == k*((k+1)/2)+r, {k, r}, Integers]]; L[n_] := Which[{k0, r0} = kr[n]; r0 == 0, k0, 1 <= r0 <= k0-2, k0+1, k0-1 <= r0 <= k0, k0+2]; Join[{1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7}, Table[L[n], {n, 15, 80}]] (* _Jean-François Alcover_, Oct 10 2015 *)
%o (Haskell)
%o a188429 n = a188429_list !! (n-1)
%o a188429_list = [1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7] ++
%o f [15 ..] (drop 15 a010054_list) 0 4
%o where f (x:xs) (t:ts) r k | t == 1 = (k + 1) : f xs ts 1 (k + 1)
%o | r < k - 1 = (k + 1) : f xs ts (r + 1) k
%o | otherwise = (k + 2) : f xs ts (r + 1) k
%o -- _Reinhard Zumkeller_, Aug 06 2015
%Y Cf. A188430, A188431.
%Y Cf. A010054, A127648, A002262.
%K nonn,nice
%O 1,3
%A _Madjid Mirzavaziri_, Mar 31 2011