

A188380


Balanced ternary Keith numbers.


1



3, 49, 73, 88, 97, 198, 840, 1479, 2425, 5277, 18799
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Only terms in common with base 3 Keith numbers (A188195) for the range examined are 3 and 840.
If the sum of balanced ternary digits of a positive number is 0 or less, then the recurrence from the digits soon becomes consistently negative and the number in question is not a Keith number in balanced ternary.


LINKS

Table of n, a(n) for n=1..11.


EXAMPLE

The number 49 in balanced ternary is {1, 1, 1, 1, 1}. The pentanaccilike sequence continues 1, 1, 3, 7, 13, 25, 49, thus 49 is a Keith number in balanced ternary.


MATHEMATICA

(* First run program at A065363 to define balTernDigits *) keithFromListQ[n_Integer, digits_List] := Module[{seq = digits, curr = digits[[1]], ord = Length[digits]}, While[curr < n, curr = Plus@@Take[seq, ord]; AppendTo[seq, curr]]; Return[seq[[1]] == n]]; Select[Range[3, 19683], Plus@@balTernDigits[#] > 0 && keithFromListQ[#, balTernDigits[#]] &]


CROSSREFS

Sequence in context: A094045 A033494 A079837 * A252171 A160763 A041523
Adjacent sequences: A188377 A188378 A188379 * A188381 A188382 A188383


KEYWORD

nonn,base


AUTHOR

Alonso del Arte, Mar 29 2011


STATUS

approved



