The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065363 Sum of balanced ternary digits in n. Replace 3^k with 1 in balanced ternary expansion of n. 22
 0, 1, 0, 1, 2, -1, 0, 1, 0, 1, 2, 1, 2, 3, -2, -1, 0, -1, 0, 1, 0, 1, 2, -1, 0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 1, 2, 3, 2, 3, 4, -3, -2, -1, -2, -1, 0, -1, 0, 1, -2, -1, 0, -1, 0, 1, 0, 1, 2, -1, 0, 1, 0, 1, 2, 1, 2, 3, -2, -1, 0, -1, 0, 1, 0, 1, 2, -1, 0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 1, 2, 3, 2, 3, 4, -1, 0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Notation: (3)(1). Extension to negative n: a(-n) = -a(n). - Franklin T. Adams-Watters, May 13 2009 Row sums of A059095. - Rémy Sigrist, Oct 05 2019 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 F. T. Adams-Watters and F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6. Daniel Forgues, Table of n, a(n) for n = 0..100000 FORMULA G.f.: (1/(1-x))*Sum_{k>=0} (x^3^k - x^(2*3^k))/(x^((3^k-1)/2)*(1 + x^3^k + x^(2*3^k))). - Franklin T. Adams-Watters, May 13 2009 a(n) = A134024(n) - A134022(n). - Reinhard Zumkeller, Dec 16 2010 a(3*n - 1) = a(n) - 1, a(3*n) = a(n), a(3*n + 1) = a(n) + 1. - Thomas König, Jun 24 2020 EXAMPLE 5 = + 1(9) - 1(3) - 1(1) -> +1 - 1 - 1 = -1 = a(5). MAPLE a:= proc(n) `if`(n=0, 0, (d-> `if`(d=2,       a(q+1)-1, d+a(q)))(irem(n, 3, 'q')))     end: seq(a(n), n=0..120);  # Alois P. Heinz, Jan 09 2020 MATHEMATICA balTernDigits[0] := {0}; balTernDigits[n_/; n > 0] := Module[{unParsed = n, currRem, currExp = 1, digitList = {}, nextDigit}, While[unParsed > 0, If[unParsed == 3^(currExp - 1), digitList = Append[digitList, 1]; unParsed = 0, currRem = Mod[unParsed, 3^currExp]/3^(currExp - 1); nextDigit = Switch[currRem, 0, 0, 2, -1, 1, 1]; digitList = Append[digitList, nextDigit]; unParsed = unParsed - nextDigit * 3^(currExp - 1)]; currExp++]; digitList = Reverse[digitList]; Return[digitList]]; balTernDigits[n_/; n < 0] := (-1)balTernDigits[Abs[n]]; Table[Plus@@balTernDigits[n], {n, 0, 108}] (* Alonso del Arte, Feb 25 2011 *) terVal[lst_List] := Reverse[lst].(3^Range[0, Length[lst] - 1]); maxDig = 4; t = Table[0, {3 * 3^maxDig/2}]; t[[1]] = 1; Do[d = IntegerDigits[Range[0, 3^dig - 1], 3, dig]/.{2 -> -1}; d = Prepend[#, 1]&/@d; t[[terVal/@d]] = Total/@d, {dig, maxDig}]; Prepend[t, 0] (* T. D. Noe, Feb 24 2011 *) Array[Total[Prepend[IntegerDigits[#, 3], 0] //. {a___, b_, 2, c___} :> {a, b + 1, -1, c}] &, 109, 0] (* Michael De Vlieger, Jun 27 2020 *) PROG (Python) def a(n):     s=0     x=0     while n>0:         x=n%3         n=n//3         if x==2:             x=-1             n+=1         s+=x     return s print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 06 2017 (PARI) bt(n)=my(d=digits(n, 3), c=1); while(c, if(d[1]==2, d=concat(0, d)); c=0; for(i=2, #d, if(d[i]==2, d[i]=-1; d[i-1]+=1; c=1))); d a(n)=vecsum(bt(n)) \\ Charles R Greathouse IV, May 07 2020 CROSSREFS Cf. A059095, A065364, A053735. See A134452 for iterations. Cf. A134022, A134024. Sequence in context: A098381 A318463 A030372 * A119995 A062756 A334107 Adjacent sequences:  A065360 A065361 A065362 * A065364 A065365 A065366 KEYWORD base,easy,sign,look AUTHOR Marc LeBrun, Oct 31 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 08:08 EDT 2021. Contains 343836 sequences. (Running on oeis4.)