login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098381
Difference between the number of odd entries and the number of even entries of the n-th row of the triangle A097883.
1
1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 4, -3, 4, -3, 4, -3, 4, -3, 6, -3, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 8, -7, 10, -9
OFFSET
1,6
COMMENTS
a(n+1)-a(n) is odd and alternates in sign (after the eleventh term), at least up through the 125th row.
|a(j+1)-a(j)| >= |a(i+1)-a(i)| for all j>=i and the absolute difference results in 11 ones, 9 threes, 1 five, 7 sevens, 2 nines, 1 eleven, 0 thirteens, 69 fifteens, 1 seventeen, etc.
EXAMPLE
a(6)=2 because the sixth row of the triangle A097883 has entries {14, 15, 16, 21, 23, 25}: 4 odd entries less 2 even entries.
MATHEMATICA
a[0, 0] = 1; a[m_, n_] := a[m, n] = Block[{p = Sort[ Flatten[ Join[ Table[ a[i, j], {i, 0, m - 1}, {j, 0, i}], Table[ a[i, j], {i, m, m}, {j, 0, n - 1}]] ]]}, k = Complement[ Range[ p[[ -1]] + 1], p][[1]]; While[ Position[p, k] != {} || If[n == 0, GCD[k, a[m - 1, 0]] != 1, If[n == m, GCD[k, a[m - 1, m - 1]] != 1, GCD[k, a[m - 1, n]] != 1 || GCD[k, a[m - 1, n - 1]] != 1]], k++ ]; k]; Table[Plus @@ (2Mod[Table[ a[m, n], {n, 0, m}], 2] - 1), {m, 0, 105}]
CROSSREFS
Sequence in context: A097468 A339975 A283144 * A318463 A030372 A065363
KEYWORD
sign
AUTHOR
STATUS
approved