login
A134024
Number of positive trits in balanced ternary representation of n.
6
0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 3, 4, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 3, 4, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 3, 4, 2, 2, 3, 2, 2, 3, 3, 3, 4, 2
OFFSET
0,5
REFERENCES
D. E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, Vol 2, pp 173-175.
LINKS
Wikipedia, Balanced Ternary
FORMULA
a(n) = A134021(n) - A134022(n) - A134023(n);
a(n) > 0 for n > 0.
a(n) = A005812(n) - A134022(n) = A134022(n) + A065363(n).
EXAMPLE
100=1*3^4+1*3^3-1*3^2+0*3^1+1*3^0=='++-0+': a(100)=3;
200=1*3^5-1*3^4+1*3^3+1*3^2+1*3^1-1*3^0=='+-+++-': a(200)=4;
300=1*3^5+1*3^4-1*3^3+0*3^2+1*3^1+0*3^0=='++-0+0': a(300)=3.
MATHEMATICA
Array[Count[#, 1] &[Prepend[IntegerDigits[#, 3], 0] //. {a___, b_, 2, c___} :> {a, b + 1, -1, c}] &, 105, 0] (* Michael De Vlieger, Jun 27 2020 *)
PROG
(Python)
def a(n):
s=0
x=0
while n>0:
x=n%3
n //= 3
if x==2:
x=-1
n+=1
if x==1: s+=1
return s
print([a(n) for n in range(151)]) # Indranil Ghosh, Jun 07 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Oct 19 2007
STATUS
approved