The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134024 Number of positive trits in balanced ternary representation of n. 6
 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 3, 4, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 3, 4, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 3, 4, 2, 2, 3, 2, 2, 3, 3, 3, 4, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 REFERENCES D. E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, Vol 2, pp 173-175. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 Wikipedia, Balanced Ternary FORMULA a(n) = A134021(n) - A134022(n) - A134023(n); a(n) > 0 for n > 0. a(n) = A005812(n) - A134022(n) = A134022(n) + A065363(n). EXAMPLE 100=1*3^4+1*3^3-1*3^2+0*3^1+1*3^0=='++-0+': a(100)=3; 200=1*3^5-1*3^4+1*3^3+1*3^2+1*3^1-1*3^0=='+-+++-': a(200)=4; 300=1*3^5+1*3^4-1*3^3+0*3^2+1*3^1+0*3^0=='++-0+0': a(300)=3. PROG (Python) def a(n):     s=0     x=0     while n>0:         x=n%3         n=n/3         if x==2:             x=-1             n+=1         if x==1: s+=1     return s print [a(n) for n in range(151)] # Indranil Ghosh, Jun 07 2017 CROSSREFS Cf. A005812, A065363, A134021, A134022, A134023. Sequence in context: A088782 A291984 A066672 * A161069 A161108 A161043 Adjacent sequences:  A134021 A134022 A134023 * A134025 A134026 A134027 KEYWORD nonn,base AUTHOR Reinhard Zumkeller, Oct 19 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 10:41 EDT 2020. Contains 334699 sequences. (Running on oeis4.)