login
A188039
Positions of 0 in A188038; complement of A188040.
3
2, 7, 12, 19, 24, 31, 36, 41, 48, 53, 60, 65, 70, 77, 82, 89, 94, 101, 106, 111, 118, 123, 130, 135, 140, 147, 152, 159, 164, 171, 176, 181, 188, 193, 200, 205, 210, 217, 222, 229, 234, 239, 246, 251, 258, 263, 270, 275, 280, 287, 292, 299, 304, 309, 316, 321, 328, 333, 340, 345, 350, 357, 362, 369, 374, 379, 386, 391, 398, 403, 408, 415, 420
OFFSET
1,1
COMMENTS
See A188014.
There is (conjecturally) a connection a(1+n) = f(n) where f(n) = 3*n +2 +2*floor(n*sqrt 2) is defined in A120861. Tested numerically up to n=40000. - R. J. Mathar, Jul 22 2020
LINKS
MAPLE
A188038 := proc(n)
if n = 1 then
1;
else
floor(n*sqrt(2))-floor((n-2)*sqrt(2))-2 ;
end if;
end proc:
isA188039 := proc(n)
if A188038(n) = 0 then
true;
else
false;
end if;
end proc:
A188039 := proc(n)
option remember;
if n = 1 then
2;
else
for a from procname(n-1)+1 do
if isA188039(a) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Jul 22 2020
MATHEMATICA
r=2^(1/2)); k=2;
t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r], {n, 1, 220}] (*A188038*)
Flatten[Position[t, 0]] (*A188039*)
Flatten[Position[t, 1]] (*A188040*)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 19 2011
STATUS
approved