The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188039 Positions of 0 in A188038; complement of A188040. 3
 2, 7, 12, 19, 24, 31, 36, 41, 48, 53, 60, 65, 70, 77, 82, 89, 94, 101, 106, 111, 118, 123, 130, 135, 140, 147, 152, 159, 164, 171, 176, 181, 188, 193, 200, 205, 210, 217, 222, 229, 234, 239, 246, 251, 258, 263, 270, 275, 280, 287, 292, 299, 304, 309, 316, 321, 328, 333, 340, 345, 350, 357, 362, 369, 374, 379, 386, 391, 398, 403, 408, 415, 420 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A188014. There is (conjecturally) a connection a(1+n) = f(n) where f(n) = 3*n +2 +2*floor(n*sqrt 2) is defined in A120861. Tested numerically up to n=40000. - R. J. Mathar, Jul 22 2020 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 MAPLE A188038 := proc(n)     if n = 1 then         1;     else         floor(n*sqrt(2))-floor((n-2)*sqrt(2))-2 ;     end if; end proc: isA188039 := proc(n)     if A188038(n) = 0 then         true;     else         false;     end if; end proc: A188039 := proc(n)     option remember;     if n = 1 then         2;     else         for a from procname(n-1)+1 do             if isA188039(a) then                 return a;             end if;         end do:     end if; end proc: # R. J. Mathar, Jul 22 2020 MATHEMATICA r=2^(1/2)); k=2; t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r], {n, 1, 220}]   (*A188038*) Flatten[Position[t, 0]]  (*A188039*) Flatten[Position[t, 1]]  (*A188040*) CROSSREFS Cf. A188038, A188014, A188040. Sequence in context: A099353 A297432 A299401 * A133459 A023669 A137401 Adjacent sequences:  A188036 A188037 A188038 * A188040 A188041 A188042 KEYWORD nonn AUTHOR Clark Kimberling, Mar 19 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 22:15 EDT 2021. Contains 343992 sequences. (Running on oeis4.)