login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099353
From P-positions in a certain game.
3
0, 2, 7, 12, 18, 25, 35, 45, 56, 68, 83, 98, 114, 131, 149, 170, 191, 213, 236, 260, 285, 313, 341, 370, 400, 431, 463, 496, 530, 565, 603, 641, 680, 720, 761, 803, 846, 890, 935, 983, 1031, 1080, 1130, 1181, 1233, 1286, 1340, 1395, 1451, 1510, 1569
OFFSET
0,2
LINKS
A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
FORMULA
See A099352.
MAPLE
a:=proc(n) option remember: local j, t: if(n=0)then return 0: else t:=a(n-1)+1: for j from 0 to n-1 do if(t=b(j))then return t+1: elif(t<b(j))then break: fi: od: return t: fi: end:
b:=proc(n) option remember: if(n=0)then return 0: else return b(n-1) + a(n) - floor((a(n-1)+1)/a(n)) + 2: fi: end:seq(b(n), n=0..50); # Nathaniel Johnston, Apr 28 2011
MATHEMATICA
a[n_] := a[n] = Module[{j, t}, If[n == 0, 0, t = a[n - 1] + 1; For[j = 0, j <= n - 1, j++, Which[t == b[j], Return[t + 1], t < b[j], Break[]]]; t]];
b[n_] := b[n] = If[n == 0, 0, b[n - 1] + a[n] - Floor[(a[n - 1] + 1)/a[n]] + 2];
Table[b[n], {n, 0, 50}] (* Jean-François Alcover, Mar 10 2023, after Nathaniel Johnston *)
CROSSREFS
Sequence in context: A019592 A220120 A131190 * A297432 A299401 A188039
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 16 2004
STATUS
approved