login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188038 a(n) = [nr]-[kr]-[nr-kr], where r=sqrt(2), k=2, [ ]=floor. 4
1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

See A188014, A188037.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = [n*r] - [2*r] - [(n-2)*r], where r=sqrt(2).

MAPLE

A188038:=n->floor(n*sqrt(2))-floor(2*sqrt(2))-floor(n*sqrt(2) - 2*sqrt(2)); seq(A188038(n), n=1..100); # Wesley Ivan Hurt, Dec 02 2013

MATHEMATICA

r=2^(1/2)); k=2;

t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r], {n, 1, 220}]   (*A188038*)

Flatten[Position[t, 0]]  (*A188039*)

Flatten[Position[t, 1]]  (*A188040*)

PROG

(PARI) for(n=1, 30, print1(floor(n*sqrt(2)) - floor(2*sqrt(2)) - floor((n-2)*sqrt(2)), ", ")) \\ G. C. Greubel, Jan 31 2018

(MAGMA) [Floor(n*Sqrt(2)) - Floor(2*Sqrt(2)) - Floor((n-2)*Sqrt(2)): n in [1..30]]; // G. C. Greubel, Jan 31 2018

CROSSREFS

Cf. A188014, A187967, A188039, A188040.

Sequence in context: A284368 A287725 A176702 * A275694 A267922 A267358

Adjacent sequences:  A188035 A188036 A188037 * A188039 A188040 A188041

KEYWORD

nonn

AUTHOR

Clark Kimberling, Mar 19 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 08:44 EDT 2019. Contains 322241 sequences. (Running on oeis4.)