|
|
A187988
|
|
T(n,k)=Number of nondecreasing arrangements of n numbers x(i) in -(n+k-2)..(n+k-2) with the sum of sign(x(i))*2^|x(i)| zero
|
|
14
|
|
|
0, 0, 1, 0, 2, 3, 0, 3, 5, 9, 0, 4, 7, 15, 36, 0, 5, 9, 22, 57, 117, 0, 6, 11, 30, 82, 181, 411, 0, 7, 13, 39, 111, 260, 632, 1452, 0, 8, 15, 49, 144, 355, 912, 2199, 5040, 0, 9, 17, 60, 181, 467, 1257, 3158, 7593, 17829, 0, 10, 19, 72, 222, 597, 1673, 4357, 10920, 26706, 62870
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Table starts
.....0.....0.....0.....0.....0.....0.....0.....0....0....0...0...0..0..0.0
.....1.....2.....3.....4.....5.....6.....7.....8....9...10..11..12.13.14
.....3.....5.....7.....9....11....13....15....17...19...21..23..25.27
.....9....15....22....30....39....49....60....72...85...99.114.130
....36....57....82...111...144...181...222...267..316..369.426
...117...181...260...355...467...597...746...915.1105.1317
...411...632...912..1257..1673..2166..2742..3407.4167
..1452..2199..3158..4357..5825..7592..9689.12148
..5040..7593.10920.15146.20404.26835.34588
.17829.26706.38385.53379.72246.95590
|
|
LINKS
|
|
|
EXAMPLE
|
Some solutions for n=5 k=3
.-3...-6...-5...-3...-3...-6...-4...-4...-1...-4...-2...-4...-4...-2...-3...-5
.-3...-3...-5...-1...-3...-5...-1...-2...-1...-4...-2...-2...-4...-1....1...-1
.-2...-3...-2....1...-3...-5....0...-2....0...-4...-1....2...-3....1....1....1
..2....4....2....2...-3....6....0....3....0...-4....1....3....3....1....1....4
..4....6....6....2....5....6....4....4....1....6....3....3....5....1....1....4
|
|
MAPLE
|
AatE := proc(n, nminusfE, E)
option remember ;
local a, fEminus, fEplus, f0, resn ;
if E = 0 then
if n =0 then
1;
else
0;
end if;
else
a :=0 ;
for fEminus from 0 to nminusfE do
for fEplus from 0 to nminusfE-fEminus do
f0 := nminusfE-fEminus-fEplus ;
resn := n-(2^E+1)*fEminus+(2^E-1)*fEplus ;
if abs (resn) <= (1+2^(E-1))*f0 then
a := a+procname(resn, f0, E-1) ;
end if;
end do:
end do:
a ;
end if;
end proc:
AatE(n, n, n+k-2) ;
end proc:
|
|
CROSSREFS
|
Row n=4 is A055999(k+1). A187989 (n=5), A187990 (n=6), A187991 (n=7), A187992 (n=8), A187979 (k=n), A187980 (k=1), A187981 (k=2), A187982 (k=3), A187983 (k=4), A187984 (k=5), A187985 (k=6).
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|