login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187989
Number of nondecreasing arrangements of 5 numbers x(i) in -(n+3)..(n+3) with the sum of sign(x(i))*2^|x(i)| zero.
2
36, 57, 82, 111, 144, 181, 222, 267, 316, 369, 426, 487, 552, 621, 694, 771, 852, 937, 1026, 1119, 1216, 1317, 1422, 1531, 1644, 1761, 1882, 2007, 2136, 2269, 2406, 2547, 2692, 2841, 2994, 3151, 3312, 3477, 3646, 3819, 3996, 4177, 4362, 4551, 4744, 4941
OFFSET
1,1
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..86 correcting the earlier R. H. Hardin file at a(28).
EXAMPLE
Some solutions for n=3:
-6 -4 -4 -6 -4 -3 -4 -3 -6 -3 -3 -6 -4 -5 -5 -1
-1 -4 -4 -3 -1 -2 -3 0 -5 -3 -3 -1 1 -4 -2 -1
-1 -4 -3 3 1 -2 -3 0 5 -2 -3 1 1 3 -2 -1
2 -4 3 5 3 3 4 1 5 2 -3 5 2 3 3 1
6 6 5 5 3 3 4 2 5 4 5 5 3 5 5 2
MATHEMATICA
AatE[n_, nminusfE_, E_] := AatE[n, nminusfE, E] = Module[{a, fEminus, fEplus, f0, resn}, If[E == 0, If[n == 0, 1, 0], a = 0; For[fEminus = 0, fEminus <= nminusfE, fEminus++, For[fEplus = 0, fEplus <= nminusfE - fEminus, fEplus++, f0 = nminusfE - fEminus - fEplus; resn = n - (2^E + 1)*fEminus + (2^E - 1)*fEplus; If[Abs[resn] <= (1 + 2^(E - 1))*f0, a = a + AatE[resn, f0, E - 1]]]]; a]];
T[n_, k_] := AatE[n, n, n + k - 2];
Table[T[5, k], {k, 1, 86}] (* Jean-François Alcover, Sep 18 2024, after R. J. Mathar in A187988 *)
CROSSREFS
Row 5 of A187988.
Sequence in context: A336384 A124941 A116321 * A080469 A341283 A260138
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 18 2011
EXTENSIONS
a(28) corrected by R. J. Mathar, May 09 2023
STATUS
approved