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Abstract. We discuss aspects of OEIS sequence A187988, enumerating bal-

anced sums of powers of two, explain the mechanics of the Maple implemen-
tation, and provide conjectural rational generating functions along rows and

columns of the table.

1. Statement of the Combinatorial Problem

1.1. Exponential diophantine equation. The sequence is concerned with count-
ing solutions to Hardin’s equation [2, A187988]

(1)

n∑
i=1

sgn(xi)2
|xi| = 0,

where the sign function is defined as

(2) sgn(m) ≡

{
1, m ≥ 0;

−1, m < 0.

To obtain a finite number of solutions, the exponents are limited to be in a pre-
defined range −E ≤ xi ≤ E. The theme is to find all multisets of exponents x+i ,
0 ≤ x+i ≤ E, and a multiset of exponents x−i , 0 < x−i ≤ E for the exponential
diophantine equation

(3) 2x
+
0 + 2x

+
1 + 2x

+
2 + · · ·+ 2x

+

n+ = 2x
−
1 + 2x

−
2 + · · ·+ 2x

−
n− ,

where the total number of terms on both sides is some predefined n+ + n− = n.
Multiset means the exponents x±i do not need to be distinct.

1.2. Linear diophantine equation. Any solution can be encoded as a vector of
frequencies f+i and f−i counting how often exponents appear on the left and right
sides of this equation:

(4)
∑
i≥0

f+i 2i =
∑
i≥1

f−i 2i.

The asymmetry in the start index in the sums of both sides is a result of putting
the zero in the bag of numbers with positive sign in (2). For convenience of the
nomenclature, we place the sum of the nonnegative xi on the left hand side (LHS)
of the equation, the sum of the negative xi on the right hand side (RHS).
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A standard notation of partitions denotes how often (as an exponent) a number
(at the base) occurs in a partition; equation (4) could be written as a formal equality
between two weak partitions of n:
(5)

0f
+
0 1f

+
1 2f

+
2 3f

+
3 . . . Ef

+

n+ ∼ 1f
−
1 2f

−
2 3f

−
3 . . . Ef

−
n− ;

∑
f+i +

∑
f−i = n, 0 ≤ f+i , f

−
i .

Example 1. Given E = 6 and n = 8, the solution xi = {−6,−2, 0, 0, 1, 4, 4, 5}
satisfying 20 + 20 + 21 + 24 + 24 + 25 = 26 + 22 has the partition representation
02114251 ∼ 2161.

Definition 1. T (n,E) is the number of solutions to the diophantine equation (4)
under the constraints

(6)

E∑
i=0

f+i +

E∑
i=1

f−i = n; 0 ≤ f+i , f
−
i .

Definition 2. A set of solutions {xi} satisfying (1) or an equivalent set of frequen-
cies f±i satisfying (5) is called balanced.

For any fixed limit E, (4) is a linear diophantine equation [5, 3, 1, 6].

1.3. Abacus. A physical realization of these sets f±i is a 2-sided abacus with pegs
enumerated 0, 1, . . . , E and stacks of f+0 , f

+
1 , . . . , f

+
E tokens on the LHS, and pegs

enumerated 1, 2, . . . , E and stacks of f−1 , f
−
2 , . . . , f

−
E tokens on the RHS. [Think of

this as two towers of Hanoi with indistinguishable tokens. . . ] There are moves on
this abacus which keep the stacks balanced (in the arithmetic sense defined above),
for example:

• Removing two tokens on peg i and adding one token on peg i+1 on the same
side (which decreases n by 1) or in reverse (which increases n by 1). The
arithmetic equivalent is 2× 2i = 2i+1. The standard binary representation
of a number is actually found by repeating that move as often as possible in
any order, which means as long as there are pegs with 2 or more tokens; the
final position is a representation were all fi ≤ 1 on that side, fi representing
the bits of the binary representation.

• Adding a token on peg i of both sides (which increases n by 2) or remov-
ing one on peg i of both sides (which decreases n by 2). The arithmetic
equivalent is adding 2i to LHS and RHS.

2. Primitive Solutions

The primitive solutions are those where the multisets of exponents on both sides
of Equation (3) are the same, f+i = f−i , for all i ≥ 1. This implies that the
exponent 0 does not appear on the left hand side: f+0 = 0. They can be counted
given the mere constraints on the total number terms, n, and the maximum, E,
of the exponents. There are n/2 terms on each side of the equation, so n is even.
Considering the ordered list of exponents and their frequencies in the notation (5),
the frequencies are weak compositions of n/2 into E terms. So the number of
primitive solutions is [8, §1.2]

(7) T p(n,E) =

{
0, n odd;(
n/2+E−1

n/2

)
, n even.

This provides a trivial lower bound T (n,E) ≥ T p(n,E) on the number of solutions.



EXPONENTIAL DIOPHANTINE EQUATION WITH POWERS OF TWO 3

i\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 0 1
1 0 1 1
2 0 1 1 1 1
3 0 1 1 1 2 2 1 1 1
4 0 1 1 1 2 3 4 4 4 4 3 2 2 2 1 1 1
5 0 1 1 1 2 3 5 8 10 11 13 13 12 13 13 12 12 11 9 8 7 6 6 5 4

Table 1. Number of ways of partitioning 2i into 0 ≤ k ≤ 2i

powers of 2 [2, A089052].

3. Small Parameters

For small total number n of terms on both sides, the number of solutions can be
counted by hand.

3.1. n=0. n = 0 is not interesting because there are no solutions besides admitting
0 = 0, n+ = n− = 0, T (0, E) = 1.

3.2. n=1. For n = 1 there is one term on one side, none on the other, and because
powers of 2 are positive, there are no solutions,

(8) T (1, E) = 0.

3.3. n=2. Generally, there is at least one term on each side, because powers of
2 are positive, so balancing the sums requires some positive contribution on both
sides. For n = 2 there must be one term on each side, n+ = n− = 1, so these are
primitive solutions counted in (7):

(9) T (2, E) = E.

3.4. n=3. If n = 3,

• and n+ = 2, n− = 1, the sole term on the RHS is a power of 2 which
is decomposed into two, not necessarily distinct powers of 2 on the LHS.
Considering the base-2 representation of all 3 numbers involved, this can
only be done in one way, where each term on the LHS is half the term on
the RHS, see Table 1. The exponent on the RHS is from 1 to E, so there
are E solutions of this form.

• or n+ = 1, n− = 2. This is basically the same set of solutions considered in
the previous item (by swapping the terms on both sides), but the term 20

is not admitted to the LHS, so there are only E − 1 solutions of this form.

In total

(10) T (3, E) = 2E − 1.

3.5. n=4. If n = 4, it helps to place one or two tokens of the abacus on the same
position i ≤ E on both sides, and to generate more solutions by the left moves:

• and n+ = 3, n− = 1, the sole term on the RHS is a power of 2 which is
decomposed into three, not necessarily distinct powers of 2 on the LHS.
Considering the base-2 representation of all 3 numbers involved, there is
one decomposition with the partition (j − 2)2(j − 1)1 ∼ j1 in the notation
(5). This requires 2 ≤ j ≤ E, which comprises E − 1 solutions if E ≥ 2.
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• or n+ = 2, n− = 2. Considering the base-2 representations of all 4 numbers
involved, these must be primitive solutions, of which there are T p(4, E) =
E(E + 1)/2. This is the only contribution if E = 1.
• or n+ = 1, n− = 3. This is basically the same set of solutions considered in

the first bullet by swapping both sides, but the case j = 0 cannot be split,
so this yields E − 2 solutions.

The total of the three subcases is [2, A134227]

(11) T (4, E) = (E − 1) + E(E + 1)/2 + (E − 2) = (E − 1)(E + 6)/2, E ≥ 2

with generating function

(12)
∑
E≥0

T (4, E)xE =
x(1 + x− x3)

(1− x)3
= 3 + x− 3− 9x+ 5x2

(1− x)3
.

(13) T (4, E) = −3

(
E

0

)
+ 3

(
E

1

)
+

(
E

2

)
, E ≥ 2.

3.6. E=1. If E = 1, there are f−1 terms equal 2 on the RHS, which leaves f+0 and
f+1 terms equal to 1 and 2 on the LHS, which demands f+0 + f+1 × 2 = f−1 × 2.
[The cases f+0 = 0 are the symmetric solutions (7), none for odd n, one for even
n.] Therefore f+0 = 2(f−1 − f

+
1 ) and with (6) n − f−1 − f

+
1 = 2(f−1 − f

+
1 ),  n =

3(f−1 − f
+
1 ) + 2f+1 . So T (n,E) is the number of partitions of n into f−1 − f

+
1 parts

equal 3 and f+1 parts equal 2 [2, A103221],

(14) T (n, 1) = T (n− 2, 1) +

{
1, 3 | n
0, 3 - n

, T (1, 1) = 0, T (2, 1) = 1,

The initial terms appeared already above. The generating function is

(15)
∑
n≥0

T (n, 1)zn =
1

(1− z2)(1− z3)
.

4. Recursive Enumeration

The main task is to determine the number of solutions T (n,E) as illustrated in
Table 2.

Remark 1. Hardin’s table [2, A187988] actually shifts the rows to the left discarding
the first n− 2 entries of row n; our columns are the antidiagonals of his table.

The task is to solve (4),

(16) f+0 + 2f+1 + 4f+2 · · ·+ 2Ef+E = 2f−1 + 4f−2 + · · · 2Ef−E .

Remark 2. This demonstrates that all f+0 of the solutions are even.

Eliminating f+0 with (6) helps to confine this to the subspace of constant n:
(17)
n−f+1 −f

+
2 −· · ·−f

+
E−f

−
1 −f

−
2 −· · ·−f

−
E+2f+1 +4f+2 · · ·+2Ef+E = 2f−1 +4f−2 +· · · 2Ef−E .

(18)
n+(21−1)f+1 +(22−1)f+2 · · ·+(2E−1)f+E = (21+1)f−1 +(22+1)f−2 +· · ·+(2E+1)f−E .

Finding solutions recursively for fixed maximum E may be done by nibbling off the
rightmost terms of both sides, (2E − 1)f+E and (2E + 1)f−E . The outer double loop
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n\E 1 2 3 4 5 6 7 8 9 10 11 12
0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 2 3 4 5 6 7 8 9 10 11 12
3 1 3 5 7 9 11 13 15 17 19 21 23
4 1 4 9 15 22 30 39 49 60 72 85 99
5 1 7 19 36 57 82 111 144 181 222 267 316
6 2 10 31 67 117 181 260 355 467 597 746 915
7 1 12 48 123 243 411 632 912 1257 1673 2166 2742
8 2 18 79 225 488 890 1452 2199 3158 4357 5825 7592
9 2 23 116 374 903 1797 3144 5040 7593 10920 15146 20404

10 2 28 166 609 1633 3543 6649 11285 17829 26706 38385 53379
11 2 36 240 972 2857 6720 13507 24280 40262 62870 93724 134652
12 3 45 330 1484 4794 12252 26443 50481 88078 143661 222458 330555
13 2 52 443 2220 7858 21755 50338 102023 187351 319332 513829 789895

Table 2. T (n,E), the number of solutions.

is over all possible 0 ≤ f+E ≤ n and 0 ≤ f−E ≤ n but noticing as a speedup that the

sum is also limited by f+E + f−E ≤ n.

Remark 3. So the sum is over a triangular region over the two rightmost coeffi-
cients. During the recurrence that means the multi-sum is over the simplices in the
space of the 2E coordinates. There is some similarity with Erhardt sums.

Once the two f±E are fixed, they are “combined” on the left side of the equation

defining a new n → n + (2E − 1)f+E − (2E + 1)f−E , reduced maximum exponent

E → E − 1, and reduced number of available abacus tokens
∑
f+i +

∑
f−i →∑

f+i +
∑
f−i −f

+
E −f

−
E for the next stage at the recurrence. (This updated n may

become negative for intermediate stages of the recurrence.) At the bottom of this
recurrence reaching E = 0, a solution has been established if the final equation is
0 = 0, whereas any nonzero value for n indicates no solution is found. A massive
speedup is obtained by realizing that for any (signed) n the equation can only be
kept balanced if there is a sufficient number of tokens and exponents left in the (yet

undecided) terms
∑E
i=1(2i − 1)f+i and

∑E
i=1(2i + 1)f−i . The maximum residual

sum in these terms is obtained by piling all remaining f−i +f+i tokens into the term
2E + 1 with the highest coefficient, so if |n| > (2E + 1)(

∑
f+i +

∑
f−i ) there are no

solutions in the associated branch of the recurrence, and that branch of the tree of
recurrences can be pruned.

Remark 4. This algorithm is not just enumerative but also constructive, finding
all solutions explicitly.

5. The Vector Space of the Linear Diophantine Equation

Eliminating f+E from (16) yields

(19) 2En =

E−1∑
i=0

(2E − 2i)f+i +

E∑
i=1

(2E + 2i)f−i
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which is an inhomogeneous linear diophantine equation with inhomogeneity 2En,
fixed coefficients 2E ± 2i and indeterminates f±i . Rosser’s algorithm [7] generates
for fixed E a matrix W which contains

• in the top row a solution (sequence of f±i ) which changes the inhomgeneity
by one—not helpful because it involves negative f±i and initial states f+1 =
f−1 = 1 for even n = 2 and f+0 = 2, f−1 = 1 for odd n = 3 seem to be more
suitable;
• and in the other rows sets of incremental f±i which keep the equation bal-

anced without changing n, i.e., solutions for the homogeneous equation.

Example 2. For E = 2 the matrix is
f+0 f+1 f−1 f−2

0 0 -1 1
0 1 1 -1

-2 0 1 0

Example 3. For E = 5 the matrix is
f+0 f+1 f+2 f+3 f+4 f−1 f−2 f−3 f−4 f−5

1 0 0 0 0 -1 -1 1 0 0
0 1 -1 0 0 1 -1 0 0 0
0 0 1 -1 0 0 1 -1 0 0
0 0 0 1 -1 0 0 1 -1 0
0 0 0 0 1 0 0 0 1 -1

-2 -1 1 0 0 2 1 -1 0 0
2 2 -2 0 0 -3 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 -2 2 0 0 0 -1 1 0
0 0 0 -2 2 0 0 0 -1 1

Example 4. For E = 6 the matrix is
f+0 f+1 f+2 f+3 f+4 f+5 f−1 f−2 f−3 f−4 f−5 f−6

1 0 0 0 0 0 -1 -1 1 0 0 0
0 1 -1 0 0 0 1 -1 0 0 0 0
0 0 1 -1 0 0 0 1 -1 0 0 0
0 0 0 1 -1 0 0 0 1 -1 0 0
0 0 0 0 1 -1 0 0 0 1 -1 0
0 0 0 0 0 1 0 0 0 0 1 -1

-2 -1 1 0 0 0 2 1 -1 0 0 0
2 2 -2 0 0 0 -3 1 0 0 0 0
0 0 -2 2 0 0 0 0 -1 1 0 0
0 0 0 -2 2 0 0 0 0 -1 1 0
0 0 0 0 -2 2 0 0 0 0 -1 1

All lines from the 2nd on correspond to generators an infinite group of operations
on the 2-sided abacus that keep n constant. The caveat is that the allowed moves
must keep all f±i nonnegative all the time.

This is a vector space: any linear combination of lines 2 and further down is also
a move of tokens that keeps n constant. f+E is implied by (6), the negative sum of
the other entries in a row.
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6. Conjectures

Based on the numerical counts obtained from the recursive algorithm, a set of
heuristic rational generating functions ensues. As (18) is partitioning n in some
sense in parts of 2i + 1 and 2i − 1 (two types of parts 3 because the coefficient
in front of f+2 and f−1 is the same), and since 1/[(1 − xi)α(1 − xj)β · · · ] is the
generating function for partitions into α sizes of i, β sizes of j . . . [4], the format of
the denominators of some generating functions of the columns is expected.

The associated C-finite recurrences are implicit by expanding the polynomials of
z or x in the denominators [9].

Conjecture 1. Column E = 2:

(20)
∑
n≥0

T (n, 2)zn =
1 + z2 + z3 + 2z4 + z5 + z6

(1− z2)(1− z5)(1− z3)2

Conjecture 2. Column E = 3:
(21)∑
n≥0

T (n, 3)zn =
1− z + 2z2 + z3 + 3z4 + 3z5 + 4z6 + 2z7 + 4z8 + 3z9 + 3z10 + 2z11 + 3z12 + z14

(1− z2)(1− z5)(1− z9)(1− z3)2(1− z)

The generating functions for the rows all appear to have denominators (1− x)k,
so T (n,E) appear to be polynomials in E for sufficiently large E.

Conjecture 3. Row n = 5:

(22)
∑
E≥0

T (5, E)xE = 8 + 4x+ x2 − 8− 21x+ 9x2

(1− x)3
.

(23) T (5, E) = −8

(
E

0

)
+ 5

(
E

1

)
+ 4

(
E

2

)
, E ≥ 3.

Conjecture 4. Row n = 6:

(24)
∑
E≥0

T (6, E)xE = 13 + 11x+ 5x2 + x3 − 13− 43x+ 37x2 − 8x3

(1− x)4
.

(25) T (6, E) = −13

(
E

0

)
+ 4

(
E

1

)
+ 10

(
E

2

)
+

(
E

3

)
, E ≥ 4.

Conjecture 5. Row n = 7:

(26)
∑
E≥0

T (7, E)xE = 12 + 20x+ 15x2 + 6x3 + x4 − (4− 3x)(3− 5x− 4x2)

(1− x)4
.

(27) T (7, E) = −12

(
E

0

)
− 7

(
E

1

)
+ 23

(
E

2

)
+ 6

(
E

3

)
, E ≥ 5

Conjecture 6. Row n = 8:
(28)∑
E≥0

T (8, E)xE = −17+22x+31x2+20x3+7x4+x5+
17− 105x+ 257x2 − 246x3 + 78x4

(1− x)5
.

(29) T (8, E) = 17

(
E

0

)
− 37

(
E

1

)
+ 44

(
E

2

)
+ 21

(
E

3

)
+

(
E

4

)
, E ≥ 6.
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The question obviously left open here is how the properties of the linear dio-
phantine equations can be translated to Transfer Matrices or Molien Invariants
that emit such generating functions for the rows or columns without relying on
adaptive fitting to finite numerical lists of solutions.
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