login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186284
Self-convolution square equals A127776.
3
1, 2, 48, 1704, 71490, 3291780, 160844160, 8189867280, 429832053840, 23088359467040, 1263134996327680, 70138971602098560, 3942799810867610280, 223942062435751452240, 12831882367225056387840, 740872398293620831990080
OFFSET
0,2
LINKS
FORMULA
Self-convolution 4th power equals A002897.
G.f.: sqrt( K(k)/(Pi/2) ) in powers of (kk'/4)^2, where K(k) is complete elliptic integral of first kind evaluated at modulus k. [From a formula by Michael Somos in A002897]
G.f.: sqrt( 1/AGM(1, (1-16x)^(1/2)) ) in powers of x(1-16x) where AGM() is the arithmetic-geometric mean. [From a formula by Michael Somos in A004981]
a(n) ~ Pi^(3/4) * 2^(6*n - 1/2) / (Gamma(1/4)^3 * n^(3/2)). - Vaclav Kotesovec, Apr 10 2018
EXAMPLE
G.f.: A(x) = 1 + 2*x + 48*x^2 + 1704*x^3 + 71490*x^4 + 3291780*x^5 +...
Related expansions.
The g.f. of A127776 equals A(x)^2:
A(x)^2 = 1 + 4*x + 100*x^2 + 3600*x^3 + 152100*x^4 + 7033104*x^5 +...+ A004981(n)^2*x^n +...
The g.f. of A002897 equals A(x)^4:
A(x)^4 = 1 + 8*x + 216*x^2 + 8000*x^3 + 343000*x^4 + 16003008*x^5 +...+ A000984(n)^3*x^n +...
The g.f. of A004981 begins:
1/(1-8*x)^(1/4) = 1 + 2*x + 10*x^2 + 60*x^3 + 390*x^4 + 2652*x^5 +...
where A004981(n) = (2^n/n!)*Product_{k=0..n-1} (4k + 1).
The g.f. of A000984 begins:
1/(1-4*x)^(1/2) = 1 + 2*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 +...
where A000984(n) = (2n)!/(n!)^2 forms the central binomial coefficients.
MATHEMATICA
nmax = 20; CoefficientList[Series[Sqrt[Hypergeometric2F1[ 1/4, 1/4, 1, 64*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 10 2018 *)
PROG
(PARI) {a(n)=local(A004981=1/(1-8*x+x*O(x^n))^(1/4), A=sum(m=0, n, polcoeff(A004981, m)^2*x^m+x*O(x^n))^(1/2)); polcoeff(A, n)}
(PARI) {a(n)=local(A000984=1/(1-4*x+x*O(x^n))^(1/2), A=sum(m=0, n, polcoeff(A000984, m)^3*x^m+x*O(x^n))^(1/4)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 16 2011
STATUS
approved