Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Aug 14 2018 23:38:17
%S 1,2,48,1704,71490,3291780,160844160,8189867280,429832053840,
%T 23088359467040,1263134996327680,70138971602098560,
%U 3942799810867610280,223942062435751452240,12831882367225056387840,740872398293620831990080
%N Self-convolution square equals A127776.
%H G. C. Greubel, <a href="/A186284/b186284.txt">Table of n, a(n) for n = 0..500</a>
%F Self-convolution 4th power equals A002897.
%F G.f.: sqrt( K(k)/(Pi/2) ) in powers of (kk'/4)^2, where K(k) is complete elliptic integral of first kind evaluated at modulus k. [From a formula by _Michael Somos_ in A002897]
%F G.f.: sqrt( 1/AGM(1, (1-16x)^(1/2)) ) in powers of x(1-16x) where AGM() is the arithmetic-geometric mean. [From a formula by _Michael Somos_ in A004981]
%F a(n) ~ Pi^(3/4) * 2^(6*n - 1/2) / (Gamma(1/4)^3 * n^(3/2)). - _Vaclav Kotesovec_, Apr 10 2018
%e G.f.: A(x) = 1 + 2*x + 48*x^2 + 1704*x^3 + 71490*x^4 + 3291780*x^5 +...
%e Related expansions.
%e The g.f. of A127776 equals A(x)^2:
%e A(x)^2 = 1 + 4*x + 100*x^2 + 3600*x^3 + 152100*x^4 + 7033104*x^5 +...+ A004981(n)^2*x^n +...
%e The g.f. of A002897 equals A(x)^4:
%e A(x)^4 = 1 + 8*x + 216*x^2 + 8000*x^3 + 343000*x^4 + 16003008*x^5 +...+ A000984(n)^3*x^n +...
%e The g.f. of A004981 begins:
%e 1/(1-8*x)^(1/4) = 1 + 2*x + 10*x^2 + 60*x^3 + 390*x^4 + 2652*x^5 +...
%e where A004981(n) = (2^n/n!)*Product_{k=0..n-1} (4k + 1).
%e The g.f. of A000984 begins:
%e 1/(1-4*x)^(1/2) = 1 + 2*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 +...
%e where A000984(n) = (2n)!/(n!)^2 forms the central binomial coefficients.
%t nmax = 20; CoefficientList[Series[Sqrt[Hypergeometric2F1[ 1/4, 1/4, 1, 64*x]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 10 2018 *)
%o (PARI) {a(n)=local(A004981=1/(1-8*x+x*O(x^n))^(1/4),A=sum(m=0,n,polcoeff(A004981,m)^2*x^m+x*O(x^n))^(1/2));polcoeff(A,n)}
%o (PARI) {a(n)=local(A000984=1/(1-4*x+x*O(x^n))^(1/2),A=sum(m=0,n,polcoeff(A000984,m)^3*x^m+x*O(x^n))^(1/4));polcoeff(A,n)}
%Y Cf. A004981, A000984, A127776, A002897.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Feb 16 2011