login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013517
Denominator of [x^(2n+1)] in the Taylor expansion sin(cosec(x)-cot(x))= x/2 + x^3/48 - x^5/1280 - 55*x^7/129024 - 143*x^9/1769472 + ...
0
2, 48, 1280, 129024, 1769472, 81749606400, 4637432217600, 3296144130048000, 46620662575398912000, 750318428272302489600, 5639235345120252395520000, 72287478143981475374039040000, 7543041197632849604247552000000, 1461479318123759876522171695104000000, 4746884825265972078944013665697792000000
OFFSET
0,1
COMMENTS
Numerators are apparently provided by A096664.
FORMULA
a(n) = A096671(n) * 2^(2*n+1). - Sean A. Irvine, Aug 07 2018
EXAMPLE
sin(cosec(x) - cot(x)) = x/(2^1*1!) + x^3/(2^3*3!) - 3*x^5/(2^5*5!) - 275*x^7/(2^7*7!) - 15015*x^9/(2^9*9!) - 968167*x^11/(2^11*11!) + ... (apparently covered by A003706).
PROG
(PARI) x = 'x + O('x^50); v = apply(x->denominator(x), Vec(sin(1/sin(x)-cotan(x)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Sep 20 2018
CROSSREFS
Sequence in context: A012803 A135394 A010046 * A027509 A348322 A186284
KEYWORD
nonn,frac
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Corrected by R. J. Mathar, Dec 18 2011
More terms from Michel Marcus, Sep 20 2018
STATUS
approved