login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013518
Numerator of [x^(2n+1)] in the Taylor expansion arcsin(cosec(x)-cot(x)) = x/2 + x^3/16 + 3*x^5/256 + 83*x^7/30720 + 8887*x^9/12386304 + ...
1
1, 1, 3, 83, 8887, 57539, 2419601, 298733192941, 84896691713, 54207578317691, 535009143553922969, 303988210353762448529, 39439620915967757710853, 18146112662693896499335287481
OFFSET
0,3
COMMENTS
The e.g.f. of x/2, arcsin(cosec(x)-cot(x)) = x/(2^1*1!) + 3*x^3/(2^3*3!) + 45*x^5/(2^5*5!) +1743*x^7(/2^7*7!) + 133305*x^9/(2^9*9!) + ..., is apparently covered by A012780.
LINKS
FORMULA
a(n)=(sum(k=0..n, (binomial(2*k,k)*sum(j=0..2*n-2*k, binomial(j+2*k,2*k)*(j+2*k+1)!*2^(-4*k-j-1)*(-1)^(n+k+j)*stirling2(2*n+1,j+2*k+1)))/(2*k+1)))/(2*n+1)!. - Vladimir Kruchinin, May 31 2013
MATHEMATICA
Numerator[Take[CoefficientList[Series[ArcSin[Csc[x]-Cot[x]], {x, 0, 30}], x], {2, -1, 2}]] (* Harvey P. Dale, Feb 02 2012 *)
PROG
(Maxima) a(n):=(sum((binomial(2*k, k)*sum(binomial(j+2*k, 2*k)*(j+2*k+1)!*2^(-4*k-j-1)*(-1)^(n+k+j)*stirling2(2*n+1, j+2*k+1), j, 0, 2*n-2*k))/(2*k+1), k, 0, n))/(2*n+1)!; /* Vladimir Kruchinin, May 31 2013 */
CROSSREFS
Cf. A089171.
Sequence in context: A173811 A093166 A111648 * A166241 A140158 A160875
KEYWORD
nonn,frac
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Name edited by R. J. Mathar, Dec 19 2011
STATUS
approved