OFFSET
1,1
COMMENTS
This is the second of four polka dot arrays; see A185868.
row 1: A130883;
row 2: A100037;
row 3: A100038;
row 4: A100039;
col 1: A014107;
col 2: A033537;
col 3: A100040;
col 4: A100041;
diag (2,18,...): A077591;
diag (7,31,...): A157914;
diag (16,48,...): A035008;
diag (29,69,...): A108928;
antidiagonal sums: A033431;
antidiagonal sums: 2*(1^3, 2^3, 3^3, 4^3,...) = 2*A000578.
A060432(n) + n is odd if and only if n is in this sequence. - Peter Kagey, Feb 03 2016
LINKS
Peter Kagey, Table of n, a(n) for n = 1..10000
FORMULA
T(n,k) = 2n-1+(n+k-1)*(2n+2k-3), k>=1, n>=1.
EXAMPLE
Northwest corner:
2....7....16...29...46
9....18...31...48...69
20...33...50...71...96
35...52...73...98...127
MATHEMATICA
f[n_, k_]:=2n-1+(2n+2k-3)(n+k-1);
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]]
Table[f[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten
PROG
(Haskell)
a185869 n = a185869_list !! (n - 1)
a185869_list = scanl (+) 2 $ a' 1
where a' n = 2 * n + 3 : replicate n 2 ++ a' (n + 1)
-- Peter Kagey, Sep 02 2016
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 05 2011
STATUS
approved