|
|
A185869
|
|
(Odd,even)-polka dot array in the natural number array A000027; read by antidiagonals.
|
|
5
|
|
|
2, 7, 9, 16, 18, 20, 29, 31, 33, 35, 46, 48, 50, 52, 54, 67, 69, 71, 73, 75, 77, 92, 94, 96, 98, 100, 102, 104, 121, 123, 125, 127, 129, 131, 133, 135, 154, 156, 158, 160, 162, 164, 166, 168, 170, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 379, 381, 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This is the second of four polka dot arrays; see A185868.
antidiagonal sums: 2*(1^3, 2^3, 3^3, 4^3,...) = 2*A000578.
|
|
LINKS
|
|
|
FORMULA
|
T(n,k) = 2n-1+(n+k-1)*(2n+2k-3), k>=1, n>=1.
|
|
EXAMPLE
|
Northwest corner:
2....7....16...29...46
9....18...31...48...69
20...33...50...71...96
35...52...73...98...127
|
|
MATHEMATICA
|
f[n_, k_]:=2n-1+(2n+2k-3)(n+k-1);
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]]
Table[f[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten
|
|
PROG
|
(Haskell)
a185869 n = a185869_list !! (n - 1)
a185869_list = scanl (+) 2 $ a' 1
where a' n = 2 * n + 3 : replicate n 2 ++ a' (n + 1)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|