|
|
A185867
|
|
Numbers m whose decimal digits are a subsequence of the decimal digits of k*m for some 1 < k < 10.
|
|
0
|
|
|
2, 4, 5, 6, 8, 15, 18, 20, 25, 35, 40, 45, 50, 60, 75, 80, 125, 150, 175, 180, 200, 225, 250, 275, 350, 375, 400, 450, 475, 500, 575, 600, 625, 675, 750, 800, 875, 1125, 1250, 1375, 1500, 1625, 1750, 1800, 1875
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Are there finitely many non-multiples of 10 in this sequence? a(72) = 7875 seems to be the last one. - Charles R Greathouse IV, Feb 08 2011
|
|
LINKS
|
|
|
EXAMPLE
|
15 is a term because 15*7 = 105, and 105 can be formed from 15 by inserting the digit 0 in the middle.
|
|
PROG
|
(PARI) sub(v, u)=my(j=1); if(#v==#u, return(0)); for(i=1, #v, if(v[i]!=u[j], if(i!=j, return(0)), j++)); 1
isA185867(n)=my(N=eval(Vec(Str(n)))); for(k=2, 9, if(sub(eval(Vec(Str(n*k))), N), return(k))); 0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|