|
|
A106352
|
|
Number of compositions of n into 3 parts such that no two adjacent parts are equal.
|
|
1
|
|
|
1, 2, 7, 9, 15, 21, 28, 35, 46, 54, 66, 78, 91, 104, 121, 135, 153, 171, 190, 209, 232, 252, 276, 300, 325, 350, 379, 405, 435, 465, 496, 527, 562, 594, 630, 666, 703, 740, 781, 819, 861, 903, 946, 989, 1036, 1080, 1128, 1176, 1225, 1274, 1327, 1377, 1431
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,2
|
|
COMMENTS
|
3*a(n) is total number of parts of multiplicity 1 in all compositions of n into 3 parts. - Vladeta Jovovic, Apr 27 2006
|
|
LINKS
|
Table of n, a(n) for n=4..56.
A. Knopfmacher and H. Prodinger, On Carlitz compositions, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589.
Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
|
|
FORMULA
|
G.f. x^4*(1+4*x^2-3*x^3+4*x^4)/((1-x^6)*(1-x)^2).
|
|
MATHEMATICA
|
Drop[CoefficientList[Series[x^4(1+4x^2-3x^3+4x^4)/((1-x^6)(1-x)^2), {x, 0, 60}], x], 4] (* or *) LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 2, 7, 9, 15, 21}, 60] (* Harvey P. Dale, May 13 2018 *)
|
|
CROSSREFS
|
Column 3 of A106351. Cf. A003242.
Sequence in context: A294863 A085544 A154789 * A098017 A225675 A185869
Adjacent sequences: A106349 A106350 A106351 * A106353 A106354 A106355
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Christian G. Bower, Apr 29 2005
|
|
STATUS
|
approved
|
|
|
|