login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183209
Tree generated by floor(3n/2): a(1) = 1, a(2n) = (3*a(n))-1, a(2n+1) = floor((3*a(n+1))/2).
8
1, 2, 3, 5, 4, 8, 7, 14, 6, 11, 12, 23, 10, 20, 21, 41, 9, 17, 16, 32, 18, 35, 34, 68, 15, 29, 30, 59, 31, 62, 61, 122, 13, 26, 25, 50, 24, 47, 48, 95, 27, 53, 52, 104, 51, 101, 102, 203, 22, 44, 43, 86, 45, 89, 88, 176, 46, 92, 93, 185, 91, 182, 183, 365, 19, 38, 39, 77, 37
OFFSET
1,2
COMMENTS
A permutation of the positive integers. See the comment at A183079. Leftmost branch of tree is essentially A061418. Rightmost: A007051.
FORMULA
Let L(n)=floor(3n/2).
Let U(n)=3n-1. U is the complement of L.
The tree-array T(n,k) is then given by rows:
T(0,0)=1; T(1,0)=2;
T(n,2j)=L(T(n-1),j);
T(n,2j+1)=U(T(n-1),j);
for j=0,1,...,2^(n-1)-1, n>=2.
From Antti Karttunen, Jan 26 2015: (Start)
a(1) = 1, a(2n) = (3*a(n))-1, a(2n+1) = A032766(a(n+1)) = floor((3*a(n+1))/2).
Other identities:
a(2^n) = A007051(n) for all n >= 0. [A property shared with A048673 and A254103.]
(End)
EXAMPLE
First levels of the tree:
1
2
3 5
4 8 7 14
MAPLE
f:= proc(n) option remember;
if n::even then 3*procname(n/2)-1
else floor(3*procname((n+1)/2)/2)
fi
end proc:
f(1):= 1:
seq(f(n), n=1..100); # Robert Israel, Jan 26 2015
MATHEMATICA
a[1]=1; a[n_] := a[n] = If[EvenQ[n], 3a[n/2]-1, Floor[3a[(n+1)/2]/2] ]; Array[a, 100] (* Jean-François Alcover, Feb 02 2018 *)
PROG
(Scheme, with memoizing macro definec)
(definec (A183209 n) (cond ((<= n 1) n) ((even? n) (A016789 (- (A183209 (/ n 2)) 1))) (else (A032766 (A183209 (/ (+ n 1) 2))))))
;; Antti Karttunen, Jan 26 2015
(Haskell)
import Data.List (transpose)
a183209 n k = a183209_tabf !! (n-1) !! (k-1)
a183209_row n = a183209_tabf !! (n-1)
a183209_tabf = [1] : iterate (\xs -> concat $
transpose [map a032766 xs, map (a016789 . subtract 1) xs]) [2]
a183209_list = concat a183209_tabf
-- Reinhard Zumkeller, Jun 27 2015
(Python)
def a(n):
if n==1: return 1
if n%2==0: return 3*a(n//2) - 1
else: return (3*a((n - 1)//2 + 1))//2
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017
CROSSREFS
Similar permutations: A048673, A254103.
Inverse permutation: A259431.
Sequence in context: A075157 A183080 A183082 * A046708 A338251 A185728
KEYWORD
nonn,tabf,look
AUTHOR
Clark Kimberling, Dec 30 2010
EXTENSIONS
Formula to the name-field added by Antti Karttunen, Jan 26 2015
STATUS
approved