login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183079 Tree generated by the triangular numbers: a(1) = 1; a(2n) = nontriangular(a(n)), a(2n+1) = triangular(a(n+1)), where triangular = A000217, nontriangular = A014132. 17
1, 2, 3, 4, 6, 5, 10, 7, 21, 9, 15, 8, 55, 14, 28, 11, 231, 27, 45, 13, 120, 20, 36, 12, 1540, 65, 105, 19, 406, 35, 66, 16, 26796, 252, 378, 34, 1035, 54, 91, 18, 7260, 135, 210, 26, 666, 44, 78, 17, 1186570, 1595, 2145, 76, 5565, 119, 190, 25, 82621, 434 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A permutation of the positive integers.
In general, suppose that L and U are complementary sequences of positive integers such that
(1) L(1)=1; and
(2) if n>1, then n=L(k) or n=U(k) for some k<n.
The tree generated by the sequence L is defined as follows:
T(0,0)=1; T(1,0)=2; T(n,2j)=L(T(n-1,j));
T(n,2j+1)=U(T(n-1,j)); for j=0,1,...,2^(n-1)-1, n>=2.
The numbers, taken in the order generated, form a permutation of the positive integers.
LINKS
FORMULA
Let L(n) be the n-th triangular number (A000217).
Let U(n) be the n-th non-triangular number (A014132).
The tree-array T(n,k) is then given by rows:
T(0,0)=1; T(1,0)=2;
T(n,2j)=L(T(n-1,j));
T(n,2j+1)=U(T(n-1,j));
for j=0,1,...,2^(n-1)-1, n>=2.
a(1) = 1; after which: a(2n) = A014132(a(n)), a(2n+1) = A000217(a(n+1)). - Antti Karttunen, May 20 2015
EXAMPLE
First levels of the tree:
1
|
...................2...................
3 4
6......../ \........5 10......./ \........7
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
21 9 15 8 55 14 28 11
231 27 45 13 120 20 36 12 1540 65 105 19 406 35 66 16
Beginning with 3 and 4, the numbers are generated in pairs, such as (3,4), (6,5), (10,7), (21,9),...
In all such pairs, the first number belongs to A000217; the second, to A014132.
MATHEMATICA
tr[n_]:=n*(n+1)/2; nt[n_]:= n+Round@ Sqrt[2*n]; a[1]=1; a[n_Integer] := a[n] = If[ EvenQ@n, nt@a[n/2], tr@ a@ Ceiling[n/2]]; a/@Range[58] (* Giovanni Resta, May 20 2015 *)
PROG
(Haskell)
a183079 n k = a183079_tabf !! (n-1) !! (k-1)
a183079_row n = a183079_tabf !! n
a183079_tabf = [1] : iterate (\row -> concatMap f row) [2]
where f x = [a000217 x, a014132 x]
a183079_list = concat a183079_tabf
-- Reinhard Zumkeller, Dec 12 2012
(Scheme, with memoizing definec-macro)
(definec (A183079 n) (cond ((<= n 1) n) ((even? n) (A014132 (A183079 (/ n 2)))) (else (A000217 (A183079 (/ (+ n 1) 2))))))
;; Antti Karttunen, May 18 2015
CROSSREFS
Cf. A220347 (inverse), A220348.
Cf. A183089, A183209 (similar permutations), also A257798.
Sequence in context: A080998 A209268 A257798 * A119629 A014631 A263266
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Dec 23 2010
EXTENSIONS
Formula added to the name and a new tree illustration to the Example section by Antti Karttunen, May 20 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 19 17:03 EDT 2024. Contains 374410 sequences. (Running on oeis4.)