This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074049 Tree generated by the Wythoff sequences: a permutation of the positive integers. 15
 1, 2, 3, 5, 4, 7, 8, 13, 6, 10, 11, 18, 12, 20, 21, 34, 9, 15, 16, 26, 17, 28, 29, 47, 19, 31, 32, 52, 33, 54, 55, 89, 14, 23, 24, 39, 25, 41, 42, 68, 27, 44, 45, 73, 46, 75, 76, 123, 30, 49, 50, 81, 51, 83, 84, 136, 53, 86, 87, 141, 88, 143, 144, 233, 22, 36, 37 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Write t=tau=(1+sqrt(5))/2 and let S be generated by these rules: 1 is in S and if x is in S, then f(x) := [t*x] and g(x) := [(t+1)*x] are in S. Then S is the set of positive integers and the present permutation of S is obtained by arranging S in rows according to the order in which they are generated by f and g, starting with x=1. The formula indicates the manner in which these numbers arise as a tree:  1 stems to 2, which branches to (3,5), and thereafter, each number branches to a pair:   3->(4,7) and 5->(8,13), etc. The numbers >1 in the lower Wythoff sequence A000201 occupy the first place in each pair, and the numbers >2 in the upper Wythoff sequence A001950 occupy the second place.  The pairs, together with (1,2) are the Wythoff pairs, much studied as the solutions of the Wythoff game.  The Wythoff pairs also occur, juxtaposed, in the Wythoff array, A035513. LINKS Ivan Neretin, Table of n, a(n) for n = 1..8192 FORMULA Array T(n, k) by rows: T(0, 0)=1; T(1, 0)=2; T(n, 2j) = floor(tau*T(n-1, j)); T(n, 2j+1) = floor((tau+1)*T(n-1, j)) for j=0,1,...,2^(n-1)-1, n>=2. EXAMPLE First levels of the tree: ...................1 ...................2 ...........3.................5 .......4.......7........8........13 .....6..10...11..18....12..20...21..34 MATHEMATICA a = {1, 2}; row = {a[[-1]]}; r = GoldenRatio; s = r/(r - 1); Do[a = Join[a, row = Flatten[{Floor[#*{r, s}]} & /@ row]], {n, 5}]; a (* Ivan Neretin, Nov 09 2015 *) CROSSREFS Cf. A074050, A000201, A001950, A035513. Equals A048680(n-1) + 1. Sequence in context: A316668 A099424 A117955 * A193973 A245057 A127521 Adjacent sequences:  A074046 A074047 A074048 * A074050 A074051 A074052 KEYWORD nonn,tabf AUTHOR Clark Kimberling, Aug 14 2002 EXTENSIONS Extended by Clark Kimberling, Dec 23 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 19 09:21 EST 2018. Contains 318246 sequences. (Running on oeis4.)